BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27486111)

  • 1. Spike synchrony generated by modulatory common input through NMDA-type synapses.
    Wagatsuma N; von der Heydt R; Niebur E
    J Neurophysiol; 2016 Sep; 116(3):1418-33. PubMed ID: 27486111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance.
    Harsch A; Robinson HP
    J Neurosci; 2000 Aug; 20(16):6181-92. PubMed ID: 10934268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention.
    Wagatsuma N; Hu B; von der Heydt R; Niebur E
    PLoS Comput Biol; 2021 Mar; 17(3):e1008829. PubMed ID: 33765007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron.
    Mishra J; Fellous JM; Sejnowski TJ
    Neural Netw; 2006 Nov; 19(9):1329-46. PubMed ID: 17027225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of neuronal transient synchrony during propagation of activity through neocortical circuitry.
    Golomb D
    J Neurophysiol; 1998 Jan; 79(1):1-12. PubMed ID: 9425171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB).
    Rabang CF; Bartlett EL
    PLoS One; 2011; 6(12):e29375. PubMed ID: 22195049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar golgi cells.
    Maex R; Vos BP; De Schutter E
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):175-92. PubMed ID: 10673554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study.
    Kopysova IL; Korogod SM; Durand J; Tyc-Dumont S
    J Neurophysiol; 1996 Aug; 76(2):1015-24. PubMed ID: 8871216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike synchrony reveals emergence of proto-objects in visual cortex.
    Martin AB; von der Heydt R
    J Neurosci; 2015 Apr; 35(17):6860-70. PubMed ID: 25926461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic gain changes during attentional modulation.
    Sripati AP; Johnson KO
    Neural Comput; 2006 Aug; 18(8):1847-67. PubMed ID: 16771655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
    Kitano K; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):237-50. PubMed ID: 17415629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous rate-synchrony codes in populations of spiking neurons.
    Masuda N
    Neural Comput; 2006 Jan; 18(1):45-59. PubMed ID: 16354380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPA and NMDA receptor-mediated currents in developing dentate gyrus granule cells.
    Ye GL; Yi S; Gamkrelidze G; Pasternak JF; Trommer BL
    Brain Res Dev Brain Res; 2005 Mar; 155(1):26-32. PubMed ID: 15763272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping.
    Roelfsema PR; Lamme VA; Spekreijse H
    Nat Neurosci; 2004 Sep; 7(9):982-91. PubMed ID: 15322549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex.
    Kapur A; Lytton WW; Ketchum KL; Haberly LB
    J Neurophysiol; 1997 Nov; 78(5):2546-59. PubMed ID: 9356404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex.
    Hempel CM; Hartman KH; Wang XJ; Turrigiano GG; Nelson SB
    J Neurophysiol; 2000 May; 83(5):3031-41. PubMed ID: 10805698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study.
    Golomb D; Shedmi A; Curtu R; Ermentrout GB
    J Neurophysiol; 2006 Feb; 95(2):1049-67. PubMed ID: 16236776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.