These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 27486890)

  • 1. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics.
    Li H; Yang W; Aili A; Zhang T
    Langmuir; 2017 Aug; 33(34):8574-8581. PubMed ID: 28767250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X; Patel RS; Weibel JA; Garimella SV
    Sci Rep; 2016 Jan; 6():18649. PubMed ID: 26725512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation.
    Mulroe MD; Srijanto BR; Ahmadi SF; Collier CP; Boreyko JB
    ACS Nano; 2017 Aug; 11(8):8499-8510. PubMed ID: 28719740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.