BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27487081)

  • 1. Comparative Proteomic Analysis of Extracellular Vesicles Isolated by Acoustic Trapping or Differential Centrifugation.
    Rezeli M; Gidlöf O; Evander M; Bryl-Górecka P; Sathanoori R; Gilje P; Pawłowski K; Horvatovich P; Erlinge D; Marko-Varga G; Laurell T
    Anal Chem; 2016 Sep; 88(17):8577-86. PubMed ID: 27487081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of exercise on the plasma vesicular proteome: a methodological study comparing acoustic trapping and centrifugation.
    Bryl-Górecka P; Sathanoori R; Al-Mashat M; Olde B; Jögi J; Evander M; Laurell T; Erlinge D
    Lab Chip; 2018 Oct; 18(20):3101-3111. PubMed ID: 30178811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multinodal Acoustic Trapping Enables High Capacity and High Throughput Enrichment of Extracellular Vesicles and Microparticles in miRNA and MS Proteomics Studies.
    Broman A; Lenshof A; Evander M; Happonen L; Ku A; Malmström J; Laurell T
    Anal Chem; 2021 Mar; 93(8):3929-3937. PubMed ID: 33592145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling.
    Kreimer S; Ivanov AR
    Methods Mol Biol; 2017; 1660():295-302. PubMed ID: 28828666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and Characterization of Amniotic Fluid-Derived Extracellular Vesicles for Biomarker Discovery.
    Ebert B; Rai AJ
    Methods Mol Biol; 2019; 1885():287-294. PubMed ID: 30506205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Hematuria on the Proteomic Profile of Urinary Extracellular Vesicles: Technical Challenges.
    Raimondo F; Chinello C; Stella M; Santorelli L; Magni F; Pitto M
    J Proteome Res; 2018 Aug; 17(8):2572-2580. PubMed ID: 29905074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optimized Procedure for Proteomic Analysis of Extracellular Vesicles Using In-Stage Tip Digestion and DIA LC-MS/MS: Application to Liquid Biopsy in Cancer.
    Soni RK; Dimapanat L; Katari MS; Rai AJ
    Methods Mol Biol; 2022; 2546():401-409. PubMed ID: 36127607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Proteomics for the Analysis of Circulating Extracellular Vesicles.
    Barrachina MN; García Á
    Methods Mol Biol; 2021; 2259():13-23. PubMed ID: 33687706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration.
    Xu R; Simpson RJ; Greening DW
    Methods Mol Biol; 2017; 1545():91-116. PubMed ID: 27943209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-contact acoustic capture of microparticles from small plasma volumes.
    Evander M; Gidlöf O; Olde B; Erlinge D; Laurell T
    Lab Chip; 2015 Jun; 15(12):2588-96. PubMed ID: 25943791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
    Xu R; Greening DW; Rai A; Ji H; Simpson RJ
    Methods; 2015 Oct; 87():11-25. PubMed ID: 25890246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small extracellular vesicles' enrichment from biological fluids using an acoustic trap.
    Chen M; Pei Z; Wang Y; Song F; Zhong J; Wang C; Ma Y
    Analyst; 2024 May; 149(11):3169-3177. PubMed ID: 38639189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of extracellular vesicles for proteomic profiling.
    Choi DS; Gho YS
    Methods Mol Biol; 2015; 1295():167-77. PubMed ID: 25820722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma Biomarker Identification and Quantification by Microparticle Proteomics.
    Harel M; Geiger T
    Methods Mol Biol; 2017; 1619():477-486. PubMed ID: 28674905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of human urine extracellular vesicles.
    Liu Z; Cauvi DM; Bernardino EMA; Lara B; Lizardo RE; Hawisher D; Bickler S; De Maio A
    Cell Stress Chaperones; 2018 Sep; 23(5):943-953. PubMed ID: 29796787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis.
    Baldan-Martin M; de la Cuesta F; Alvarez-Llamas G; Ruiz-Hurtado G; Ruilope LM; Barderas MG
    Methods Mol Biol; 2017; 1619():141-149. PubMed ID: 28674883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease.
    Sódar BW; Kovács Á; Visnovitz T; Pállinger É; Vékey K; Pocsfalvi G; Turiák L; Buzás EI
    Expert Rev Proteomics; 2017 Dec; 14(12):1073-1090. PubMed ID: 29025360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.
    Chiasserini D; van Weering JR; Piersma SR; Pham TV; Malekzadeh A; Teunissen CE; de Wit H; Jiménez CR
    J Proteomics; 2014 Jun; 106():191-204. PubMed ID: 24769233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients.
    Moyano AL; Li G; Boullerne AI; Feinstein DL; Hartman E; Skias D; Balavanov R; van Breemen RB; Bongarzone ER; Månsson JE; Givogri MI
    J Neurosci Res; 2016 Dec; 94(12):1579-1587. PubMed ID: 27557608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Extracellular Vesicles from Breast Milk.
    Wang X
    Methods Mol Biol; 2017; 1660():351-353. PubMed ID: 28828670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.