BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 27487252)

  • 1. Azoreductases in drug metabolism.
    Ryan A
    Br J Pharmacol; 2017 Jul; 174(14):2161-2173. PubMed ID: 27487252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.
    Ryan A; Kaplan E; Nebel JC; Polycarpou E; Crescente V; Lowe E; Preston GM; Sim E
    PLoS One; 2014; 9(6):e98551. PubMed ID: 24915188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity.
    Chalansonnet V; Mercier C; Orenga S; Gilbert C
    BMC Microbiol; 2017 May; 17(1):126. PubMed ID: 28545445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of nitrofurazone by azoreductases: multiple activities in one enzyme.
    Ryan A; Kaplan E; Laurieri N; Lowe E; Sim E
    Sci Rep; 2011; 1():63. PubMed ID: 22355582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications.
    Suzuki H
    Appl Microbiol Biotechnol; 2019 May; 103(10):3965-3978. PubMed ID: 30941462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in azo dye degrading enzyme research.
    Chen H
    Curr Protein Pept Sci; 2006 Apr; 7(2):101-11. PubMed ID: 16611136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking.
    Zhang S; Feng L; Han Y; Xu Z; Xu L; An X; Zhang Q
    Chemosphere; 2024 Mar; 351():141173. PubMed ID: 38232904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor.
    Rolf J; Ngo ACR; Lütz S; Tischler D; Rosenthal K
    Chembiochem; 2022 Aug; 23(15):e202200121. PubMed ID: 35593146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut Microbiome-Wide Search for Bacterial Azoreductases Reveals Potentially Uncharacterized Azoreductases Encoded in the Human Gut Microbiome.
    Braccia DJ; Minabou Ndjite G; Weiss A; Levy S; Abeysinghe S; Jiang X; Pop M; Hall B
    Drug Metab Dispos; 2023 Jan; 51(1):142-153. PubMed ID: 36116790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug metabolism and antibiotic resistance in micro-organisms.
    Sim E; Ryan A
    Br J Pharmacol; 2017 Jul; 174(14):2159-2160. PubMed ID: 28463394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases.
    Bürger S; Stolz A
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2067-76. PubMed ID: 20508929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases.
    Ryan A; Wang CJ; Laurieri N; Westwood I; Sim E
    Protein Cell; 2010 Aug; 1(8):780-90. PubMed ID: 21203919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of molecular basis that underlie enzymatic specificity of AzoRo from Rhodococcus opacus 1CP: A potential NADH:quinone oxidoreductase.
    Ngo ACR; Qi J; Juric C; Bento I; Tischler D
    Arch Biochem Biophys; 2022 Mar; 717():109123. PubMed ID: 35051387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azoreductase in Staphylococcus aureus.
    Zou W; Cerniglia CE; Chen H
    Curr Protoc Toxicol; 2009; Chapter 4():Unit4.28. PubMed ID: 23045013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1.
    Ghosh DK; Mandal A; Chaudhuri J
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):229-33. PubMed ID: 1459414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract.
    Rafii F; Cerniglia CE
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):17-9. PubMed ID: 8565901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel members of the bacterial azoreductase family in Pseudomonas aeruginosa.
    Crescente V; Holland SM; Kashyap S; Polycarpou E; Sim E; Ryan A
    Biochem J; 2016 Mar; 473(5):549-58. PubMed ID: 26621870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of Pseudomonas putida azoreductase - the active site revisited.
    Gonçalves AM; Mendes S; de Sanctis D; Martins LO; Bento I
    FEBS J; 2013 Dec; 280(24):6643-57. PubMed ID: 24127652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of two azoreductases from Escherichia coli K12.
    Ghosh DK; Ghosh S; Sadhukhan P; Mandal A; Chaudhuri J
    Indian J Exp Biol; 1993 Dec; 31(12):951-4. PubMed ID: 8112774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicological significance of azo dye metabolism by human intestinal microbiota.
    Feng J; Cerniglia CE; Chen H
    Front Biosci (Elite Ed); 2012 Jan; 4(2):568-86. PubMed ID: 22201895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.