BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27487256)

  • 41. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY; Ledbetter R; Shaw S; Pence N; Tokmina-Lukaszewska M; Eilers B; Guo Q; Pokhrel N; Cash VL; Dean DR; Antony E; Bothner B; Peters JW; Seefeldt LC
    Biochemistry; 2016 Jul; 55(26):3625-35. PubMed ID: 27295169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases.
    Fisher K; Hare ND; Newton WE
    Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Connecting the geometric and electronic structures of the nitrogenase iron-molybdenum cofactor through site-selective
    Badding ED; Srisantitham S; Lukoyanov DA; Hoffman BM; Suess DLM
    Nat Chem; 2023 May; 15(5):658-665. PubMed ID: 36914792
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein.
    Shen J; Dean DR; Newton WE
    Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum.
    Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC
    J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis.
    Scott DJ; May HD; Newton WE; Brigle KE; Dean DR
    Nature; 1990 Jan; 343(6254):188-90. PubMed ID: 2153269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements.
    Davydov R; Khadka N; Yang ZY; Fielding AJ; Lukoyanov D; Dean DR; Seefeldt LC; Hoffman BM
    Isr J Chem; 2016 Oct; 56(9-10):841-851. PubMed ID: 27777444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis.
    Jacobs D; Watt GD
    Biochemistry; 2013 Jul; 52(28):4791-9. PubMed ID: 23815521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of the metal clusters in the DeltanifB and DeltanifH mofe proteins of nitrogenase from Azotobacter vinelandii.
    Broach RB; Rupnik K; Hu Y; Fay AW; Cotton M; Ribbe MW; Hales BJ
    Biochemistry; 2006 Dec; 45(50):15039-48. PubMed ID: 17154541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum wavefunction simulations.
    Li Z; Guo S; Sun Q; Chan GK
    Nat Chem; 2019 Nov; 11(11):1026-1033. PubMed ID: 31570817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.
    Yousafzai FK; Eady RR
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for Functionally Relevant Encounter Complexes in Nitrogenase Catalysis.
    Owens CP; Katz FE; Carter CH; Luca MA; Tezcan FA
    J Am Chem Soc; 2015 Oct; 137(39):12704-12. PubMed ID: 26360912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event.
    Yang ZY; Badalyan A; Hoffman BM; Dean DR; Seefeldt LC
    J Am Chem Soc; 2023 Mar; 145(10):5637-5644. PubMed ID: 36857604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow.
    Tittsworth RC; Hales BJ
    Biochemistry; 1996 Jan; 35(2):479-87. PubMed ID: 8555218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A VTVH MCD and EPR Spectroscopic Study of the Maturation of the "Second" Nitrogenase P-Cluster.
    Rupnik K; Lee CC; Hu Y; Ribbe MW; Hales BJ
    Inorg Chem; 2018 Apr; 57(8):4719-4725. PubMed ID: 29611695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitrogen binding to the FeMo-cofactor of nitrogenase.
    Schimpl J; Petrilli HM; Blöchl PE
    J Am Chem Soc; 2003 Dec; 125(51):15772-8. PubMed ID: 14677967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A confirmation of the quench-cryoannealing relaxation protocol for identifying reduction states of freeze-trapped nitrogenase intermediates.
    Lukoyanov D; Yang ZY; Duval S; Danyal K; Dean DR; Seefeldt LC; Hoffman BM
    Inorg Chem; 2014 Apr; 53(7):3688-93. PubMed ID: 24635454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: heme activation via reduction-gated exogenous ligand exchange.
    Crane BR; Siegel LM; Getzoff ED
    Biochemistry; 1997 Oct; 36(40):12101-19. PubMed ID: 9315848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron transfer in nitrogenase catalysis.
    Seefeldt LC; Hoffman BM; Dean DR
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):19-25. PubMed ID: 22397885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.