These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27487356)

  • 21. Functional selectivity of recombinant mammalian SWI/SNF subunits.
    Kadam S; McAlpine GS; Phelan ML; Kingston RE; Jones KA; Emerson BM
    Genes Dev; 2000 Oct; 14(19):2441-51. PubMed ID: 11018012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.
    Kwon SY; Grisan V; Jang B; Herbert J; Badenhorst P
    PLoS Genet; 2016 Apr; 12(4):e1005969. PubMed ID: 27046080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene.
    Fleming AB; Pennings S
    Nucleic Acids Res; 2007; 35(16):5520-31. PubMed ID: 17704134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for Regulation of ECM3 Expression by Methylation of Histone H3 Lysine 4 and Intergenic Transcription in Saccharomyces cerevisiae.
    Raupach EA; Martens JA; Arndt KM
    G3 (Bethesda); 2016 Sep; 6(9):2971-81. PubMed ID: 27449519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Divergent transcription and epigenetic directionality of human promoters.
    Lacadie SA; Ibrahim MM; Gokhale SA; Ohler U
    FEBS J; 2016 Dec; 283(23):4214-4222. PubMed ID: 27115538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of histone post-translational modification patterns based on nascent transcription data.
    Wang Z; Chivu AG; Choate LA; Rice EJ; Miller DC; Chu T; Chou SP; Kingsley NB; Petersen JL; Finno CJ; Bellone RR; Antczak DF; Lis JT; Danko CG
    Nat Genet; 2022 Mar; 54(3):295-305. PubMed ID: 35273399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation.
    Nguyen CT; Gonzales FA; Jones PA
    Nucleic Acids Res; 2001 Nov; 29(22):4598-606. PubMed ID: 11713309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional cofactors display specificity for distinct types of core promoters.
    Haberle V; Arnold CD; Pagani M; Rath M; Schernhuber K; Stark A
    Nature; 2019 Jun; 570(7759):122-126. PubMed ID: 31092928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic Analysis of the Determinants of Gene Expression Noise in Embryonic Stem Cells.
    Faure AJ; Schmiedel JM; Lehner B
    Cell Syst; 2017 Nov; 5(5):471-484.e4. PubMed ID: 29102610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1.
    Spangenberg C; Eisfeld K; Stünkel W; Luger K; Flaus A; Richmond TJ; Truss M; Beato M
    J Mol Biol; 1998 May; 278(4):725-39. PubMed ID: 9614938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promoter targeting of chromatin-modifying complexes.
    Hassan AH; Neely KE; Vignali M; Reese JC; Workman JL
    Front Biosci; 2001 Sep; 6():D1054-64. PubMed ID: 11532604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites.
    Diermeier SD; Németh A; Rehli M; Grummt I; Längst G
    PLoS Genet; 2013; 9(9):e1003786. PubMed ID: 24068958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of higher-order secondary and tertiary chromatin structures by genomic mouse mammary tumor virus promoters.
    Georgel PT; Fletcher TM; Hager GL; Hansen JC
    Genes Dev; 2003 Jul; 17(13):1617-29. PubMed ID: 12842912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.
    Parnell TJ; Schlichter A; Wilson BG; Cairns BR
    Elife; 2015 Mar; 4():e06073. PubMed ID: 25821983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic Marks Associated with Chromatin Compartments in the CTCF, RNAPII Loop and Genomic Windows.
    Szczepińska T; Mollah AF; Plewczynski D
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleosomes at active promoters: unforgettable loss.
    Henikoff S
    Cancer Cell; 2007 Nov; 12(5):407-9. PubMed ID: 17996642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inherent promoter bidirectionality facilitates maintenance of sequence integrity and transcription of parasitic DNA in mammalian genomes.
    Kalitsis P; Saffery R
    BMC Genomics; 2009 Oct; 10():498. PubMed ID: 19860919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification.
    Ohhata T; Hoki Y; Sasaki H; Sado T
    Development; 2008 Jan; 135(2):227-35. PubMed ID: 18057104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extreme HOT regions are CpG-dense promoters in C. elegans and humans.
    Chen RA; Stempor P; Down TA; Zeiser E; Feuer SK; Ahringer J
    Genome Res; 2014 Jul; 24(7):1138-46. PubMed ID: 24653213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using both strands: The fundamental nature of antisense transcription.
    Murray SC; Mellor J
    Bioarchitecture; 2016; 6(1):12-21. PubMed ID: 26760777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.