These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 27487457)
1. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Wils CR; Kaufmann K Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457 [TBL] [Abstract][Full Text] [Related]
2. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. Muhammad D; Schmittling S; Williams C; Long TA Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):64-74. PubMed ID: 27485161 [TBL] [Abstract][Full Text] [Related]
3. Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana. Kawanabe T; Fujimoto R Plant Sci; 2011 Oct; 181(4):496-503. PubMed ID: 21889057 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. Hernando CE; Romanowski A; Yanovsky MJ Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):84-94. PubMed ID: 27412912 [TBL] [Abstract][Full Text] [Related]
6. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation. Monfared MM; Carles CC; Rossignol P; Pires HR; Fletcher JC Mol Plant; 2013 Sep; 6(5):1564-79. PubMed ID: 23446032 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary, interaction and expression analysis of floral meristem identity genes in inflorescence induction of the second crop in two-crop-a-year grape culture system. Guo R; Wang B; Lin L; Cheng G; Zhou S; Xie S; Shi X; Cao M; Zhang Y; Bai X J Genet; 2018 Jun; 97(2):439-451. PubMed ID: 29932064 [TBL] [Abstract][Full Text] [Related]
8. Gene coexpression patterns during early development of the native Arabidopsis reproductive meristem: novel candidate developmental regulators and patterns of functional redundancy. Mantegazza O; Gregis V; Chiara M; Selva C; Leo G; Horner DS; Kater MM Plant J; 2014 Sep; 79(5):861-77. PubMed ID: 24923650 [TBL] [Abstract][Full Text] [Related]
9. Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Serrano-Mislata A; Fernández-Nohales P; Doménech MJ; Hanzawa Y; Bradley D; Madueño F Development; 2016 Sep; 143(18):3315-27. PubMed ID: 27385013 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial control of plant gene expression. Brkljacic J; Grotewold E Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):31-40. PubMed ID: 27427484 [TBL] [Abstract][Full Text] [Related]
12. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Liu C; Teo ZW; Bi Y; Song S; Xi W; Yang X; Yin Z; Yu H Dev Cell; 2013 Mar; 24(6):612-22. PubMed ID: 23537632 [TBL] [Abstract][Full Text] [Related]
13. RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. Klepikova AV; Logacheva MD; Dmitriev SE; Penin AA BMC Genomics; 2015 Jun; 16(1):466. PubMed ID: 26084880 [TBL] [Abstract][Full Text] [Related]
14. My favourite flowering image: an Arabidopsis inflorescence expressing fluorescent reporters for the APETALA3 and SUPERMAN genes. Prunet N J Exp Bot; 2019 Nov; 70(21):e6499-e6501. PubMed ID: 29659996 [No Abstract] [Full Text] [Related]
15. MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Rodas AL; Roque E; Hamza R; Gómez-Mena C; Minguet EG; Wen J; Mysore KS; Beltrán JP; Cañas LA Plant J; 2021 Feb; 105(3):816-830. PubMed ID: 33176041 [TBL] [Abstract][Full Text] [Related]
16. [Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana]. Penin AA; Budaev RA; Ezhova TA Genetika; 2007 Mar; 43(3):370-6. PubMed ID: 17486756 [TBL] [Abstract][Full Text] [Related]
17. Towards genome-wide prediction and characterization of enhancers in plants. Marand AP; Zhang T; Zhu B; Jiang J Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818 [TBL] [Abstract][Full Text] [Related]
18. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. Cheng X; Li G; Krom N; Tang Y; Wen J Plant Physiol; 2021 Feb; 185(1):161-178. PubMed ID: 33631796 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms and function of flower and inflorescence reversion. Tooke F; Ordidge M; Chiurugwi T; Battey N J Exp Bot; 2005 Oct; 56(420):2587-99. PubMed ID: 16131510 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence. Zhao Y; Zhang T; Broholm SK; Tähtiharju S; Mouhu K; Albert VA; Teeri TH; Elomaa P Plant Physiol; 2016 Sep; 172(1):284-96. PubMed ID: 27382139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]