BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27487923)

  • 1. Structure of the human DNA-repair protein RAD52 containing surface mutations.
    Saotome M; Saito K; Onodera K; Kurumizaka H; Kagawa W
    Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):598-603. PubMed ID: 27487923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the single-strand annealing domain of human RAD52 protein.
    Singleton MR; Wentzell LM; Liu Y; West SC; Wigley DB
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13492-7. PubMed ID: 12370410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding.
    Honda M; Okuno Y; Yoo J; Ha T; Spies M
    EMBO J; 2011 Jul; 30(16):3368-82. PubMed ID: 21804533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of residues important for DNA binding in the full-length human Rad52 protein.
    Lloyd JA; McGrew DA; Knight KL
    J Mol Biol; 2005 Jan; 345(2):239-49. PubMed ID: 15571718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of single-stranded DNA annealing by RAD52-RPA complex.
    Liang CC; Greenhough LA; Masino L; Maslen S; Bajrami I; Tuppi M; Skehel M; Taylor IA; West SC
    Nature; 2024 May; 629(8012):697-703. PubMed ID: 38658755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form.
    Kagawa W; Kurumizaka H; Ishitani R; Fukai S; Nureki O; Shibata T; Yokoyama S
    Mol Cell; 2002 Aug; 10(2):359-71. PubMed ID: 12191481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination.
    Shi I; Hallwyl SC; Seong C; Mortensen U; Rothstein R; Sung P
    J Biol Chem; 2009 Nov; 284(48):33275-84. PubMed ID: 19812039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem II.
    Nagao R; Suzuki T; Dohmae N; Shen JR; Tomo T
    FEBS Lett; 2017 Oct; 591(20):3259-3264. PubMed ID: 28862739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural basis for a bacteriophage homolog of human RAD52.
    Ploquin M; Bransi A; Paquet ER; Stasiak AZ; Stasiak A; Yu X; Cieslinska AM; Egelman EH; Moineau S; Masson JY
    Curr Biol; 2008 Aug; 18(15):1142-6. PubMed ID: 18656357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cryo-EM structure of full-length RAD52 protein contains an undecameric ring.
    Kinoshita C; Takizawa Y; Saotome M; Ogino S; Kurumizaka H; Kagawa W
    FEBS Open Bio; 2023 Mar; 13(3):408-418. PubMed ID: 36707939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
    Fujita S; Cho SH; Yoshida A; Hasebe F; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2017 Sep; 491(2):409-415. PubMed ID: 28720495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a second DNA binding site in the human Rad52 protein.
    Kagawa W; Kagawa A; Saito K; Ikawa S; Shibata T; Kurumizaka H; Yokoyama S
    J Biol Chem; 2008 Aug; 283(35):24264-73. PubMed ID: 18593704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analyses of the C-terminal half of the Saccharomyces cerevisiae Rad52 protein.
    Kagawa W; Arai N; Ichikawa Y; Saito K; Sugiyama S; Saotome M; Shibata T; Kurumizaka H
    Nucleic Acids Res; 2014 Jan; 42(2):941-51. PubMed ID: 24163251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA.
    Jackson D; Dhar K; Wahl JK; Wold MS; Borgstahl GE
    J Mol Biol; 2002 Aug; 321(1):133-48. PubMed ID: 12139939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing.
    Khade NV; Sugiyama T
    PLoS One; 2016; 11(6):e0158436. PubMed ID: 27362509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.
    Nimonkar AV; Sica RA; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3077-82. PubMed ID: 19204284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of the RNA-binding and RNA-DNA strand exchange activities of the human RAD52 protein.
    Tsuchiya R; Saotome M; Kinoshita C; Kamoi K; Kagawa W
    J Biochem; 2023 Jun; 174(1):59-69. PubMed ID: 36811351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.
    Muris DF; Bezzubova O; Buerstedde JM; Vreeken K; Balajee AS; Osgood CJ; Troelstra C; Hoeijmakers JH; Ostermann K; Schmidt H
    Mutat Res; 1994 Nov; 315(3):295-305. PubMed ID: 7526206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis for inhibition of the classical and lectin complement pathways by S. aureus extracellular adherence protein.
    Woehl JL; Ramyar KX; Katz BB; Walker JK; Geisbrecht BV
    Protein Sci; 2017 Aug; 26(8):1595-1608. PubMed ID: 28512867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of the ETV6 PNT domain polymerization interfaces.
    Gerak CAN; Cho SY; Kolesnikov M; Okon M; Murphy MEP; Sessions RB; Roberge M; McIntosh LP
    J Biol Chem; 2021; 296():100284. PubMed ID: 33450226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.