These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2748796)

  • 1. Mechanism of potentiation of contraction by depolarization during action potentials in guinea-pig ventricular muscle.
    Terrar DA; White E
    Q J Exp Physiol; 1989 May; 74(3):355-8. PubMed ID: 2748796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cytosolic calcium monitored by inward currents during action potentials in guinea-pig ventricular cells.
    Terrar DA; White E
    Proc R Soc Lond B Biol Sci; 1989 Nov; 238(1291):171-88. PubMed ID: 2575750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms and significance of calcium entry at positive membrane potentials in guinea-pig ventricular muscle cells.
    Terrar DA; White E
    Q J Exp Physiol; 1989 Mar; 74(2):121-39. PubMed ID: 2543022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical activity and contraction in cells isolated from rat and guinea-pig ventricular muscle: a comparative study.
    Mitchell MR; Powell T; Terrar DA; Twist VW
    J Physiol; 1987 Oct; 391():527-44. PubMed ID: 2451011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the plateau.
    Mitchell MR; Powell T; Terrar DA; Twist VW
    Br J Pharmacol; 1984 Mar; 81(3):543-50. PubMed ID: 6320942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of strophanthidin on calcium-activated current and contraction in single guinea-pig ventricular myocytes.
    White E; Terrar DA
    Exp Physiol; 1990 Jul; 75(4):559-72. PubMed ID: 2223056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of formamide on the electrical and mechanical properties of the guinea pig ventricle.
    Garcia X; del Castillo J; Gijón E
    Gen Pharmacol; 1993 Nov; 24(6):1387-91. PubMed ID: 8112510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of caffeine on background potassium current in isolated guinea pig ventricular myocytes.
    Cui Y; Terrar DA
    J Cardiovasc Pharmacol; 1995 May; 25(5):691-5. PubMed ID: 7630146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ryanodine on the intracellular Na+ activity and tension and action potentials of rat and guinea pig cardiac ventricular muscles.
    Suh CK; Park SR
    Yonsei Med J; 1993 Dec; 34(4):311-20. PubMed ID: 8128735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complications associated with rapid caffeine application to cardiac myocytes that are not voltage clamped.
    Zaniboni M; Yao A; Barry WH; Musso E; Spitzer KW
    J Mol Cell Cardiol; 1998 Nov; 30(11):2229-35. PubMed ID: 9925360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes.
    Negretti N; Varro A; Eisner DA
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):581-91. PubMed ID: 7473221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea-pig.
    Kurihara S; Sakai T
    J Physiol; 1985 Apr; 361():361-78. PubMed ID: 3989731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of rest potentiation in canine ventricular muscle by BAY K 8644: comparison with caffeine.
    Hryshko LV; Bouchard R; Chau T; Bose D
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H399-406. PubMed ID: 2475038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of ryanodine and caffeine on Ca-activated current in guinea-pig ventricular myocytes.
    White E; Terrar DA
    Br J Pharmacol; 1990 Oct; 101(2):399-405. PubMed ID: 2257440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents.
    Ferrier GR; Howlett SE
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):107-22. PubMed ID: 7602513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction?
    Bers DM; Christensen DM; Nguyen TX
    J Mol Cell Cardiol; 1988 May; 20(5):405-14. PubMed ID: 3210249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between postextrasystolic potentiation and slow-phase force-frequency response in guinea-pig ventricular myocardium.
    Cooper MW; Lewartowski B
    Acta Physiol Pol; 1985; 36(3):175-84. PubMed ID: 3837596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous activity of sodium loaded guinea-pig cardiac myocytes: contribution of Na+/Ca2+ exchange.
    Wettwer E; Ravens U
    Arch Int Physiol Biochim Biophys; 1991 Feb; 99(1):49-59. PubMed ID: 1713486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction.
    Mubagwa K; Lin W; Sipido K; Bosteels S; Flameng W
    J Mol Cell Cardiol; 1997 Mar; 29(3):977-89. PubMed ID: 9152859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.