BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27488095)

  • 1. Papain-like cysteine proteases as hubs in plant immunity.
    Misas-Villamil JC; van der Hoorn RA; Doehlemann G
    New Phytol; 2016 Dec; 212(4):902-907. PubMed ID: 27488095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders.
    Shindo T; Van der Hoorn RA
    Mol Plant Pathol; 2008 Jan; 9(1):119-25. PubMed ID: 18705889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.
    Liu J; Sharma A; Niewiara MJ; Singh R; Ming R; Yu Q
    BMC Genomics; 2018 Jan; 19(1):26. PubMed ID: 29306330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An apoplastic peptide activates salicylic acid signalling in maize.
    Ziemann S; van der Linde K; Lahrmann U; Acar B; Kaschani F; Colby T; Kaiser M; Ding Y; Schmelz E; Huffaker A; Holton N; Zipfel C; Doehlemann G
    Nat Plants; 2018 Mar; 4(3):172-180. PubMed ID: 29483684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics.
    Richau KH; Kaschani F; Verdoes M; Pansuriya TC; Niessen S; Stüber K; Colby T; Overkleeft HS; Bogyo M; Van der Hoorn RA
    Plant Physiol; 2012 Apr; 158(4):1583-99. PubMed ID: 22371507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host apoplastic cysteine protease activity is suppressed during the mutualistic association of Lolium perenne and Epichloë festucae.
    Passarge A; Demir F; Green K; Depotter JRL; Scott B; Huesgen PF; Doehlemann G; Misas Villamil JC
    J Exp Bot; 2021 Apr; 72(9):3410-3426. PubMed ID: 33630999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteases Underground: Analysis of the Maize Root Apoplast Identifies Organ Specific Papain-Like Cysteine Protease Activity.
    Schulze Hüynck J; Kaschani F; van der Linde K; Ziemann S; Müller AN; Colby T; Kaiser M; Misas Villamil JC; Doehlemann G
    Front Plant Sci; 2019; 10():473. PubMed ID: 31114592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clubroot pathogen effector targets cruciferous cysteine proteases to suppress plant immunity.
    Pérez-López E; Hossain MM; Wei Y; Todd CD; Bonham-Smith PC
    Virulence; 2021 Dec; 12(1):2327-2340. PubMed ID: 34515618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Papain-Like Cysteine Proteases in Plant Development.
    Liu H; Hu M; Wang Q; Cheng L; Zhang Z
    Front Plant Sci; 2018; 9():1717. PubMed ID: 30564252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize Phytocytokines Modulate Pro-Survival Host Responses and Pathogen Resistance.
    Koenig M; Moser D; Leusner J; Depotter JRL; Doehlemann G; Misas Villamil J
    Mol Plant Microbe Interact; 2023 Sep; 36(9):592-604. PubMed ID: 37102770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions.
    Jashni MK; Mehrabi R; Collemare J; Mesarich CH; de Wit PJ
    Front Plant Sci; 2015; 6():584. PubMed ID: 26284100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of a papain-like cysteine protease gene
    Li Y; Liu P; Mei L; Jiang G; Lv Q; Zhai W; Li C
    Front Plant Sci; 2022; 13():1065253. PubMed ID: 36531367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant vigilance: plant functions guarded by resistance proteins.
    Su J; Spears BJ; Kim SH; Gassmann W
    Plant J; 2018 Feb; 93(4):637-650. PubMed ID: 29232015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effector from the Huanglongbing-associated pathogen targets citrus proteases.
    Clark K; Franco JY; Schwizer S; Pang Z; Hawara E; Liebrand TWH; Pagliaccia D; Zeng L; Gurung FB; Wang P; Shi J; Wang Y; Ancona V; van der Hoorn RAL; Wang N; Coaker G; Ma W
    Nat Commun; 2018 Apr; 9(1):1718. PubMed ID: 29712915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection.
    Wang Y; Wang Y
    Mol Plant Microbe Interact; 2018 Jan; 31(1):6-12. PubMed ID: 29090656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipid-induced cell death in Arabidopsis is negatively regulated by the papain-like cysteine protease RD21.
    Ormancey M; Thuleau P; van der Hoorn RAL; Grat S; Testard A; Kamal KY; Boudsocq M; Cotelle V; Mazars C
    Plant Sci; 2019 Mar; 280():12-17. PubMed ID: 30823989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond pathogens: microbiota interactions with the plant immune system.
    Teixeira PJP; Colaianni NR; Fitzpatrick CR; Dangl JL
    Curr Opin Microbiol; 2019 Jun; 49():7-17. PubMed ID: 31563068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indispensable Role of Proteases in Plant Innate Immunity.
    Balakireva AV; Zamyatnin AA
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29473858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Peptide Signals Hidden in the Structure of Functional Proteins in Plant Immune Responses.
    Lyapina I; Filippova A; Fesenko I
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31491850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story.
    Bhattacharjee S; Noor JJ; Gohain B; Gulabani H; Dnyaneshwar IK; Singla A
    IUBMB Life; 2015 Jul; 67(7):524-32. PubMed ID: 26177826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.