These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27488104)

  • 1. Effect of electric charging on the velocity of water flow in CNT.
    Abbasi HR; Karimian SM
    J Mol Model; 2016 Sep; 22(9):198. PubMed ID: 27488104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water desalination by electrical resonance inside carbon nanotubes.
    Feng JW; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2016 Oct; 18(40):28290-28296. PubMed ID: 27711432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field mediated separation of water-ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes.
    Borthakur MP; Bandyopadhyay D; Biswas G
    Faraday Discuss; 2018 Sep; 209(0):259-271. PubMed ID: 29972173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
    Kim D; Darve E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Transport Properties of Water-Methanol Solution through a CNT with Oscillating Electric Field.
    Wang H; Shi J; Liu G; Zhang Y; Zhang J; Li S
    J Phys Chem B; 2017 Feb; 121(5):1041-1053. PubMed ID: 28068091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water distillation modeling by disjoint CNT-based channels under the influence of external electric fields.
    Rizi SH; Lohrasebi A
    J Mol Model; 2020 Aug; 26(9):236. PubMed ID: 32812099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface nanoparticle control of a nanometer water pump.
    Su J; Zhao Y; Fang C; Bilal Ahmed S; Shi Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22406-22416. PubMed ID: 28808710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction of water slipping in carbon nanotubes.
    Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of water-ethanol solutions with carbon nanotubes and electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    Phys Chem Chem Phys; 2016 Dec; 18(48):33310-33319. PubMed ID: 27897278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for carbon nanotube-DNA hybrid using one-dimensional density of states.
    Malysheva O; Tang T; Schiavone P
    J Colloid Interface Sci; 2012 Aug; 380(1):25-33. PubMed ID: 22677440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charging-induced asymmetric spin distribution in an asymmetric (9,0) carbon nanotube.
    Wang J; Roeterdink WG; Jiang W; Dai X; Gao Y; Wang B; Lei Y; Wang Z; Zhang RQ
    Phys Chem Chem Phys; 2015 Nov; 17(43):28860-5. PubMed ID: 26452095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field.
    Forbes TP; Degertekin FL; Fedorov AG
    Phys Fluids (1994); 2011 Jan; 23(1):12104. PubMed ID: 21301636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.