These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27488408)
1. Disruption of YLR162W in Saccharomyces cerevisiae results in increased tolerance to organic solvents. Kim HS Biotechnol Lett; 2016 Nov; 38(11):1955-1960. PubMed ID: 27488408 [TBL] [Abstract][Full Text] [Related]
2. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae. Park WK; Yang JW; Kim HS J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285 [TBL] [Abstract][Full Text] [Related]
3. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Kim HS; Kim NR; Yang J; Choi W Appl Microbiol Biotechnol; 2011 Aug; 91(4):1159-72. PubMed ID: 21556919 [TBL] [Abstract][Full Text] [Related]
4. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae. Kim B; Kim HS FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330 [TBL] [Abstract][Full Text] [Related]
5. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain. Matsui K; Teranishi S; Kamon S; Kuroda K; Ueda M Appl Environ Microbiol; 2008 Jul; 74(13):4222-5. PubMed ID: 18469127 [TBL] [Abstract][Full Text] [Related]
6. Disruption of RIM15 confers an increased tolerance to heavy metals in Saccharomyces cerevisiae. Kim HS Biotechnol Lett; 2020 Jul; 42(7):1193-1202. PubMed ID: 32248397 [TBL] [Abstract][Full Text] [Related]
7. soxRS gene increased the level of organic solvent tolerance in Escherichia coli. Nakajima H; Kobayashi M; Negishi T; Aono R Biosci Biotechnol Biochem; 1995 Jul; 59(7):1323-5. PubMed ID: 7670195 [TBL] [Abstract][Full Text] [Related]
8. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae. Kim HS; Kim NR; Kim W; Choi W Appl Microbiol Biotechnol; 2012 Jul; 95(2):531-40. PubMed ID: 22639140 [TBL] [Abstract][Full Text] [Related]
9. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388 [TBL] [Abstract][Full Text] [Related]
10. ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. Nishida N; Ozato N; Matsui K; Kuroda K; Ueda M J Biotechnol; 2013 May; 165(2):145-52. PubMed ID: 23523622 [TBL] [Abstract][Full Text] [Related]
11. Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Aono R; Negishi T; Nakajima H Appl Environ Microbiol; 1994 Dec; 60(12):4624-6. PubMed ID: 7811102 [TBL] [Abstract][Full Text] [Related]
12. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
13. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Takahashi T; Shimoi H; Ito K Mol Genet Genomics; 2001 Aug; 265(6):1112-9. PubMed ID: 11523784 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae. Takahashi T; Yano T; Zhu J; Hwang GW; Naganuma A J Toxicol Sci; 2010 Dec; 35(6):945-6. PubMed ID: 21139346 [TBL] [Abstract][Full Text] [Related]
15. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. Shiratori A; Shibata T; Arisawa M; Hanaoka F; Murakami Y; Eki T Yeast; 1999 Feb; 15(3):219-53. PubMed ID: 10077188 [TBL] [Abstract][Full Text] [Related]
16. Screening for candidate genes involved in tolerance to organic solvents in yeast. Matsui K; Hirayama T; Kuroda K; Shirahige K; Ashikari T; Ueda M Appl Microbiol Biotechnol; 2006 Jun; 71(1):75-9. PubMed ID: 16493551 [TBL] [Abstract][Full Text] [Related]
17. Disruption of YCP4 enhances freeze-thaw tolerance in Saccharomyces cerevisiae. Kim HS Biotechnol Lett; 2022 Mar; 44(3):503-511. PubMed ID: 35124760 [TBL] [Abstract][Full Text] [Related]
18. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related]
19. Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy. Mizobata A; Mitsui R; Yamada R; Matsumoto T; Yoshihara S; Tokumoto H; Ogino H J Biosci Bioeng; 2021 Mar; 131(3):283-289. PubMed ID: 33277188 [TBL] [Abstract][Full Text] [Related]
20. Disruption of six novel ORFs on the left arm of chromosome XII reveals one gene essential for vegetative growth of Saccharomyces cerevisiae. Zhang N; Ismail T; Wu J; Woodwark KC; Gardner DC; Walmsley RM; Oliver SG Yeast; 1999 Sep; 15(12):1287-96. PubMed ID: 10487931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]