BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27488408)

  • 1. Disruption of YLR162W in Saccharomyces cerevisiae results in increased tolerance to organic solvents.
    Kim HS
    Biotechnol Lett; 2016 Nov; 38(11):1955-1960. PubMed ID: 27488408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Yang J; Choi W
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1159-72. PubMed ID: 21556919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae.
    Kim B; Kim HS
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain.
    Matsui K; Teranishi S; Kamon S; Kuroda K; Ueda M
    Appl Environ Microbiol; 2008 Jul; 74(13):4222-5. PubMed ID: 18469127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of RIM15 confers an increased tolerance to heavy metals in Saccharomyces cerevisiae.
    Kim HS
    Biotechnol Lett; 2020 Jul; 42(7):1193-1202. PubMed ID: 32248397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. soxRS gene increased the level of organic solvent tolerance in Escherichia coli.
    Nakajima H; Kobayashi M; Negishi T; Aono R
    Biosci Biotechnol Biochem; 1995 Jul; 59(7):1323-5. PubMed ID: 7670195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Kim W; Choi W
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):531-40. PubMed ID: 22639140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide.
    Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae.
    Nishida N; Ozato N; Matsui K; Kuroda K; Ueda M
    J Biotechnol; 2013 May; 165(2):145-52. PubMed ID: 23523622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli.
    Aono R; Negishi T; Nakajima H
    Appl Environ Microbiol; 1994 Dec; 60(12):4624-6. PubMed ID: 7811102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae.
    Takahashi T; Shimoi H; Ito K
    Mol Genet Genomics; 2001 Aug; 265(6):1112-9. PubMed ID: 11523784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae.
    Takahashi T; Yano T; Zhu J; Hwang GW; Naganuma A
    J Toxicol Sci; 2010 Dec; 35(6):945-6. PubMed ID: 21139346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis.
    Shiratori A; Shibata T; Arisawa M; Hanaoka F; Murakami Y; Eki T
    Yeast; 1999 Feb; 15(3):219-53. PubMed ID: 10077188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for candidate genes involved in tolerance to organic solvents in yeast.
    Matsui K; Hirayama T; Kuroda K; Shirahige K; Ashikari T; Ueda M
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):75-9. PubMed ID: 16493551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of YCP4 enhances freeze-thaw tolerance in Saccharomyces cerevisiae.
    Kim HS
    Biotechnol Lett; 2022 Mar; 44(3):503-511. PubMed ID: 35124760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy.
    Mizobata A; Mitsui R; Yamada R; Matsumoto T; Yoshihara S; Tokumoto H; Ogino H
    J Biosci Bioeng; 2021 Mar; 131(3):283-289. PubMed ID: 33277188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of six novel ORFs on the left arm of chromosome XII reveals one gene essential for vegetative growth of Saccharomyces cerevisiae.
    Zhang N; Ismail T; Wu J; Woodwark KC; Gardner DC; Walmsley RM; Oliver SG
    Yeast; 1999 Sep; 15(12):1287-96. PubMed ID: 10487931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.