These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27488408)
41. Disruption and basic phenotypic analysis of six novel genes from the right arm of chromosome XII of Saccharomyces cerevisiae. Watson MD Yeast; 2001 Mar; 18(5):473-80. PubMed ID: 11255256 [TBL] [Abstract][Full Text] [Related]
42. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531 [TBL] [Abstract][Full Text] [Related]
43. Effects of selected organic solvents on the astrocyte membrane ATPase in vitro. Vaalavirta L; Tähti H Clin Exp Pharmacol Physiol; 1995 Apr; 22(4):293-4. PubMed ID: 7671444 [TBL] [Abstract][Full Text] [Related]
44. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae]. Lv Y; Xiao D; He D; Guo X Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808 [TBL] [Abstract][Full Text] [Related]
45. Disruption of six open reading frames on chromosome X of Saccharomyces cerevisiae reveals a cluster of four essential genes. Esser K; Scholle B; Michaelis G Yeast; 1999 Jul; 15(10B):921-33. PubMed ID: 10407272 [TBL] [Abstract][Full Text] [Related]
46. Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Casalone E; Barberio C; Cavalieri D; Polsinelli M Yeast; 2000 Apr; 16(6):539-45. PubMed ID: 10790691 [TBL] [Abstract][Full Text] [Related]
47. Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae. Lai MH; Silverman SJ; Gaughran JP; Kirsch DR Yeast; 1997 Mar; 13(3):199-213. PubMed ID: 9090049 [TBL] [Abstract][Full Text] [Related]
48. Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature. de Jesus Ferreira MC; Bao X; Laizé V; Hohmann S Curr Genet; 2001 Aug; 40(1):27-39. PubMed ID: 11570514 [TBL] [Abstract][Full Text] [Related]
49. Construction of Saccharomyces cerevisiae strain FAV20 useful in detection of immunosuppressants produced by soil actinomycetes. Skoko N; Vujovic J; Savic M; Papic N; Vasiljevic B; Ljubijankic G J Microbiol Methods; 2005 Apr; 61(1):137-40. PubMed ID: 15676204 [TBL] [Abstract][Full Text] [Related]
50. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Zúñiga S; Boskovic J; Jiménez A; Ballesta JP; Remacha M Yeast; 1999 Jul; 15(10B):945-53. PubMed ID: 10407274 [TBL] [Abstract][Full Text] [Related]
51. Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant. Ziaja K; Michaelis G; Lisowsky T J Mol Biol; 1993 Feb; 229(4):909-16. PubMed ID: 8445655 [TBL] [Abstract][Full Text] [Related]
52. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980 [TBL] [Abstract][Full Text] [Related]
53. Disruption and phenotypic analysis of six open reading frames from chromosome VII of Saccharomyces cerevisiae reveals one essential gene. Guerreiro P; Rodrigues-Pousada C Yeast; 2001 Jun; 18(9):781-7. PubMed ID: 11427960 [TBL] [Abstract][Full Text] [Related]
54. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Iwaki T; Higashida Y; Tsuji H; Tamai Y; Watanabe Y Yeast; 1998 Sep; 14(13):1167-74. PubMed ID: 9791888 [TBL] [Abstract][Full Text] [Related]
55. Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways. Georgakopoulos T; Koutroubas G; Vakonakis I; Tzermia M; Prokova V; Voutsina A; Alexandraki D Yeast; 2001 Sep; 18(12):1155-71. PubMed ID: 11536337 [TBL] [Abstract][Full Text] [Related]
56. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria. Uribe S; Rangel P; Espínola G; Aguirre G Appl Environ Microbiol; 1990 Jul; 56(7):2114-9. PubMed ID: 2202257 [TBL] [Abstract][Full Text] [Related]
57. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246 [TBL] [Abstract][Full Text] [Related]
58. Screening and characterization of transposon-insertion mutants in a pseudohyphal strain of Saccharomyces cerevisiae. Suzuki C; Hori Y; Kashiwagi Y Yeast; 2003 Apr; 20(5):407-15. PubMed ID: 12673624 [TBL] [Abstract][Full Text] [Related]
59. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production. Sehnem NT; Machado Ada S; Leite FC; Pita Wde B; de Morais MA; Ayub MA Bioresour Technol; 2013 Apr; 133():190-6. PubMed ID: 23422309 [TBL] [Abstract][Full Text] [Related]
60. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]