These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 27488705)

  • 1. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.
    Masmoudi F; Bessadok A; Dammak M; Jaziri M; Ammar E
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20904-20914. PubMed ID: 27488705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable plastics from renewable sources.
    Flieger M; Kantorová M; Prell A; Rezanka T; Votruba J
    Folia Microbiol (Praha); 2003; 48(1):27-44. PubMed ID: 12744074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications.
    Nazrin A; Sapuan SM; Zuhri MYM; Ilyas RA; Syafiq R; Sherwani SFK
    Front Chem; 2020; 8():213. PubMed ID: 32351928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters.
    Shirai MA; Grossmann MV; Mali S; Yamashita F; Garcia PS; Müller CM
    Carbohydr Polym; 2013 Jan; 92(1):19-22. PubMed ID: 23218260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis.
    Nair NR; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2012 Nov; 34(11):2031-5. PubMed ID: 22798041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green composites based on thermoplastic starch reinforced with micro- and nano-cellulose by melt blending - A review.
    Cataño FA; Moreno-Serna V; Cament A; Loyo C; Yáñez-S M; Ortiz JA; Zapata PA
    Int J Biol Macromol; 2023 Sep; 248():125939. PubMed ID: 37482162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymers for the environment.
    Gross RA; Kalra B
    Science; 2002 Aug; 297(5582):803-7. PubMed ID: 12161646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.
    Rico M; Rodríguez-Llamazares S; Barral L; Bouza R; Montero B
    Carbohydr Polym; 2016 Sep; 149():83-93. PubMed ID: 27261733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites.
    Area MR; Montero B; Rico M; Barral L; Bouza R; López J
    Int J Biol Macromol; 2020 Dec; 164():2028-2037. PubMed ID: 32791270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
    Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM
    Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starch-fiber foaming biodegradable composites with polylactic acid hydrophobic surface.
    Yang J; Li Y; Li X; Ji M; Peng S; Man J; Zhou L; Li F; Zhang C
    Int J Biol Macromol; 2024 May; 267(Pt 1):131406. PubMed ID: 38582472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials.
    Asgher M; Qamar SA; Bilal M; Iqbal HMN
    Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.
    B A; Suin S; Khatua BB
    Carbohydr Polym; 2014 Sep; 110():430-9. PubMed ID: 24906776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes of cassava starch and polylactic acid films submitted to biodegradation process.
    Del Rosario Salazar-Sánchez M; Campo-Erazo SD; Villada-Castillo HS; Solanilla-Duque JF
    Int J Biol Macromol; 2019 May; 129():442-447. PubMed ID: 30707997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils.
    Wang Q; Ji C; Sun J; Zhu Q; Liu J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites.
    Mokhena TC; Sefadi JS; Sadiku ER; John MJ; Mochane MJ; Mtibe A
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.
    Song AY; Oh YA; Roh SH; Kim JH; Min SC
    J Food Sci; 2016 Jan; 81(1):E86-96. PubMed ID: 26646616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.