BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2748880)

  • 1. Consequences of monoamine oxidase inhibition: increased vesicular accumulation of dopamine and norepinephrine and increased metabolism by catechol-O-methyltransferase and phenolsulfotransferase.
    Buu NT; Lussier C
    Prog Neuropsychopharmacol Biol Psychiatry; 1989; 13(3-4):563-8. PubMed ID: 2748880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between catechol-O-methyltransferase and phenolsulfotransferase in the metabolism of dopamine in the rat brain.
    Buu NT
    J Neurochem; 1985 Nov; 45(5):1612-9. PubMed ID: 3930664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of dopamine and norepinephrine metabolism in the rat brain by monoamine oxidase inhibitors.
    Buu NT; Angers M; Duhaime J; Kuchel O
    J Neural Transm; 1987; 70(1-2):39-50. PubMed ID: 3668521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different monoamine oxidase inhibitors on the metabolism of L-dopa in the rat brain.
    Nguyen TB; Angers M
    Biochem Pharmacol; 1987 May; 36(10):1731-5. PubMed ID: 3109430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular accumulation of dopamine following L-DOPA administration.
    Buu NT
    Biochem Pharmacol; 1989 Jun; 38(11):1787-92. PubMed ID: 2735936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of vesicular dopamine and norepinephrine by monoamine oxidase inhibitors.
    Buu NT
    Biochem Pharmacol; 1989 May; 38(10):1685-92. PubMed ID: 2730683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handling of dopamine and dopamine sulfate by isolated perfused rat kidney.
    Buu NT; Duhaime J; Kuchel O
    Am J Physiol; 1986 Jun; 250(6 Pt 2):F975-9. PubMed ID: 3717353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high single doses of levodopa and carbidopa on brain dopamine and its metabolites: modulation by selective inhibitors of monoamine oxidase and/or catechol-O-methyltransferase in the male rat.
    Männistö PT; Tuomainen P
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Oct; 344(4):412-8. PubMed ID: 1766471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-dopa metabolism in genetically hypertensive mice: effect of pargyline.
    Buu NT; Duhaime J; Racz K; Kuchel O; Schlager G
    Can J Physiol Pharmacol; 1987 Dec; 65(12):2390-5. PubMed ID: 3449195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of short and long-lasting effects of pargyline on cerebral dopamine metabolism.
    Waldmeier PC; Maître L
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Aug; 294(2):133-40. PubMed ID: 1012333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution by monoamine oxidase and catechol-O-methyltransferase to the total-body and pulmonary plasma clearance of catecholamines.
    Friedgen B; Wölfel R; Graefe KH
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Jan; 353(2):193-9. PubMed ID: 8717160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of sulfate conjugation, deamination, and O-methylation to metabolism of dopamine and norepinephrine in human brain.
    Rivett AJ; Eddy BJ; Roth JA
    J Neurochem; 1982 Oct; 39(4):1009-16. PubMed ID: 6956674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Methoxytyramine and normetanephrine as indicators of dopamine and noradrenaline release in mouse brain in vivo.
    Kehr W
    J Neural Transm; 1981; 50(2-4):165-78. PubMed ID: 7241115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-Methoxytyramine formation following monoamine oxidase inhibition is a poor index of dendritic dopamine release in the substantia nigra.
    Elverfors A; Pileblad E; Lagerkvist S; Bergquist F; Jonason J; Nissbrandt H
    J Neurochem; 1997 Oct; 69(4):1684-92. PubMed ID: 9326297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of centrally released noradrenaline by extraneuronal monoamine oxidase and catechol-O-methyltransferase.
    Van Wijk M; Korf J
    Brain Res; 1976 Apr; 106(2):403-6. PubMed ID: 1276880
    [No Abstract]   [Full Text] [Related]  

  • 16. A new and highly sensitive method for measuring 3-methoxytyramine using HPLC with electrochemical detection. Studies with drugs which alter dopamine metabolism in the brain.
    Heal DJ; Frankland AT; Buckett WR
    Neuropharmacology; 1990 Dec; 29(12):1141-50. PubMed ID: 2293058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BIA 3-202, a novel catechol-O-methyltransferase inhibitor, enhances the availability of L-DOPA to the brain and reduces its O-methylation.
    Parada A; Loureiro AI; Vieira-Coelho MA; Hainzl D; Soares-da-Silva P
    Eur J Pharmacol; 2001 May; 420(1):27-32. PubMed ID: 11412836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of effect of corticotropin releasing factor on hypothalamic dopamine and serotonin synthesis turnover rates in rats.
    Van Loon GR; Shum A; Ho D
    Peptides; 1982; 3(5):799-803. PubMed ID: 6294636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the acute and long-term changes in dopamine and noradrenaline metabolism in mouse brain following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
    Pileblad E; Carlsson A
    Pharmacol Toxicol; 1988 Apr; 62(4):213-22. PubMed ID: 3260379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicular and ganglionic norepinephrine in the rat: progressive increase with age.
    Buu NT; Debinski W
    J Neurochem; 1990 Feb; 54(2):620-6. PubMed ID: 2299355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.