These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 2748894)

  • 1. [Invertebrate visual pigments: the diversity of chromophore retinals and its biological significance].
    Seki T; Suzuki T
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):484-93. PubMed ID: 2748894
    [No Abstract]   [Full Text] [Related]  

  • 2. [Physical mechanisms of the photoisomerization of visual-pigment chromophore].
    Suzuki H; Ito E
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):418-27. PubMed ID: 2748890
    [No Abstract]   [Full Text] [Related]  

  • 3. [Interaction between G-protein and rhodopsin].
    Tsuda M
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):546-56. PubMed ID: 2748898
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of isotopically labelled retinal. Structural and functional studies at the atomic level of the chromophore in visual pigments.
    Lugtenburg J
    Eur J Clin Nutr; 1996 Jul; 50 Suppl 3():S17-20. PubMed ID: 8841768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Theoretical aspects of visual transduction].
    Kakitani T
    Tanpakushitsu Kakusan Koso; 1985 Sep; (28):46-55. PubMed ID: 3909225
    [No Abstract]   [Full Text] [Related]  

  • 6. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin.
    Terakita A; Tsukamoto H; Koyanagi M; Sugahara M; Yamashita T; Shichida Y
    J Neurochem; 2008 May; 105(3):883-90. PubMed ID: 18088357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of visual pigment photoproducts in transduction in invertebrate photoreceptors.
    Hillman P
    Isr J Med Sci; 1982 Jan; 18(1):141-3. PubMed ID: 7068337
    [No Abstract]   [Full Text] [Related]  

  • 8. The gecko visual pigment: the dark exchange of chromophore.
    Crescitelli F
    Vision Res; 1984; 24(11):1551-3. PubMed ID: 6533985
    [No Abstract]   [Full Text] [Related]  

  • 9. A simple procedure for the extraction of the native chromophore of visual pigments: the formaldehyde method.
    Suzuki T; Fujita Y; Noda Y; Miyata S
    Vision Res; 1986; 26(3):425-9. PubMed ID: 3727408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flies in the group Cyclorrhapha use (3S)-3-hydroxyretinal as a unique visual pigment chromophore.
    Seki T; Isono K; Ito M; Katsuta Y
    Eur J Biochem; 1994 Dec; 226(2):691-6. PubMed ID: 8001586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. I. Visual pigments.
    Cronin TW; Caldwell RL; Erdmann MV
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):179-86. PubMed ID: 11976885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the 11-cis-retinal ring methyl substituents in visual pigment formation.
    Domínguez M; Alvarez R; Pérez M; Palczewski K; de Lera AR
    Chembiochem; 2006 Nov; 7(11):1815-25. PubMed ID: 16941510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombination reaction of rhodopsin in situ studied by photoconversion of "indicator yellow".
    Kolesnikov AV; Shukolyukov SA; Cornwall MC; Govardovskii VI
    Vision Res; 2006 May; 46(10):1665-75. PubMed ID: 16153675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconduction and photoconduction activation energies of the retinals.
    Rosenberg B; Harder HC
    Photochem Photobiol; 1967 Sep; 6(9):629-41. PubMed ID: 6048066
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effects of asphyxia on the visual activity of the crayfish with neural deafferentation of the eyestalks].
    Puche J; Barrera-Mera B
    Rev Esp Fisiol; 1993 Jun; 49(2):121-4. PubMed ID: 8378584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition and distribution of retinal and 3-hydroxyretinal in the compound eye of the dragonfly.
    Seki T; Fujishita S; Obana S
    Exp Biol; 1989; 48(2):65-75. PubMed ID: 2920812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold proteins and the regeneration of visual pigments.
    Nawrot M; Liu T; Garwin GG; Crabb JW; Saari JC
    Photochem Photobiol; 2006; 82(6):1482-8. PubMed ID: 16553463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Retinal-sensitized photo-oxidation of rhodopsin].
    Starostin AV; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1985; 30(6):995-9. PubMed ID: 4074767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.