BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 27489137)

  • 1. Angular default mode network connectivity across working memory load.
    Vatansever D; Manktelow AE; Sahakian BJ; Menon DK; Stamatakis EA
    Hum Brain Mapp; 2017 Jan; 38(1):41-52. PubMed ID: 27489137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the default-mode functional connectivity of the brain correlate with working-memory performances?
    Esposito F; Aragri A; Latorre V; Popolizio T; Scarabino T; Cirillo S; Marciano E; Tedeschi G; Di Salle F
    Arch Ital Biol; 2009 Mar; 147(1-2):11-20. PubMed ID: 19678593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Default Mode Dynamics for Global Functional Integration.
    Vatansever D; Menon DK; Manktelow AE; Sahakian BJ; Stamatakis EA
    J Neurosci; 2015 Nov; 35(46):15254-62. PubMed ID: 26586814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working memory load-dependent changes in cortical network connectivity estimated by machine learning.
    Eryilmaz H; Dowling KF; Hughes DE; Rodriguez-Thompson A; Tanner A; Huntington C; Coon WG; Roffman JL
    Neuroimage; 2020 Aug; 217():116895. PubMed ID: 32360929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.
    Newton AT; Morgan VL; Rogers BP; Gore JC
    Hum Brain Mapp; 2011 Oct; 32(10):1649-59. PubMed ID: 21077136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Default mode network deactivation during odor-visual association.
    Karunanayaka PR; Wilson DA; Tobia MJ; Martinez BE; Meadowcroft MD; Eslinger PJ; Yang QX
    Hum Brain Mapp; 2017 Mar; 38(3):1125-1139. PubMed ID: 27785847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laterality effects in functional connectivity of the angular gyrus during rest and episodic retrieval.
    Bellana B; Liu Z; Anderson JAE; Moscovitch M; Grady CL
    Neuropsychologia; 2016 Jan; 80():24-34. PubMed ID: 26559474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarities and differences in the default mode network across rest, retrieval, and future imagining.
    Bellana B; Liu ZX; Diamond NB; Grady CL; Moscovitch M
    Hum Brain Mapp; 2017 Mar; 38(3):1155-1171. PubMed ID: 27774695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy-efficient intrinsic functional organization of human working memory: A resting-state functional connectivity study.
    Liu H; Yu H; Li Y; Qin W; Xu L; Yu C; Liang M
    Behav Brain Res; 2017 Jan; 316():66-73. PubMed ID: 27569182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.
    Magnuson ME; Thompson GJ; Schwarb H; Pan WJ; McKinley A; Schumacher EH; Keilholz SD
    Brain Imaging Behav; 2015 Dec; 9(4):854-67. PubMed ID: 25563228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The left frontal cortex supports reserve in aging by enhancing functional network efficiency.
    Franzmeier N; Hartmann J; Taylor ANW; Araque-Caballero MÁ; Simon-Vermot L; Kambeitz-Ilankovic L; Bürger K; Catak C; Janowitz D; Müller C; Ertl-Wagner B; Stahl R; Dichgans M; Duering M; Ewers M
    Alzheimers Res Ther; 2018 Mar; 10(1):28. PubMed ID: 29510747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related alterations in default mode network: impact on working memory performance.
    Sambataro F; Murty VP; Callicott JH; Tan HY; Das S; Weinberger DR; Mattay VS
    Neurobiol Aging; 2010 May; 31(5):839-52. PubMed ID: 18674847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size.
    Mineroff Z; Blank IA; Mahowald K; Fedorenko E
    Neuropsychologia; 2018 Oct; 119():501-511. PubMed ID: 30243926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable effects of sleep deprivation on functional connectivity in the dorsal and ventral default mode networks.
    Chen WH; Chen J; Lin X; Li P; Shi L; Liu JJ; Sun HQ; Lu L; Shi J
    Sleep Med; 2018 Oct; 50():137-144. PubMed ID: 30055480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study.
    Kim DI; Manoach DS; Mathalon DH; Turner JA; Mannell M; Brown GG; Ford JM; Gollub RL; White T; Wible C; Belger A; Bockholt HJ; Clark VP; Lauriello J; O'Leary D; Mueller BA; Lim KO; Andreasen N; Potkin SG; Calhoun VD
    Hum Brain Mapp; 2009 Nov; 30(11):3795-811. PubMed ID: 19434601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.