These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27489218)
1. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. Koštál V; Korbelová J; Poupardin R; Moos M; Šimek P J Exp Biol; 2016 Aug; 219(Pt 15):2358-67. PubMed ID: 27489218 [TBL] [Abstract][Full Text] [Related]
2. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Koštál V; Šimek P; Zahradníčková H; Cimlová J; Štětina T Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3270-4. PubMed ID: 22331891 [TBL] [Abstract][Full Text] [Related]
3. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Kostál V; Zahradnícková H; Šimek P Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482 [TBL] [Abstract][Full Text] [Related]
4. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. Rozsypal J; Moos M; Šimek P; Koštál V J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29496781 [TBL] [Abstract][Full Text] [Related]
5. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. Štětina T; Koštál V J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37846596 [TBL] [Abstract][Full Text] [Related]
6. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. Koštál V; Korbelová J; Rozsypal J; Zahradníčková H; Cimlová J; Tomčala A; Šimek P PLoS One; 2011; 6(9):e25025. PubMed ID: 21957472 [TBL] [Abstract][Full Text] [Related]
7. Fat body disintegration after freezing stress is a consequence rather than a cause of freezing injury in larvae of Drosophila melanogaster. Rozsypal J; Toxopeus J; Berková P; Moos M; Šimek P; Koštál V J Insect Physiol; 2019; 115():12-19. PubMed ID: 30928312 [TBL] [Abstract][Full Text] [Related]
8. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Toxopeus J; Koštál V; Sinclair BJ Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098 [TBL] [Abstract][Full Text] [Related]
9. Dietary L-arginine accelerates pupation and promotes high protein levels but induces oxidative stress and reduces fecundity and life span in Drosophila melanogaster. Bayliak MM; Lylyk MP; Maniukh OV; Storey JM; Storey KB; Lushchak VI J Comp Physiol B; 2018 Jan; 188(1):37-55. PubMed ID: 28668996 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress. Grgac R; Rozsypal J; Des Marteaux L; Štětina T; Koštál V Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2211744119. PubMed ID: 36191219 [TBL] [Abstract][Full Text] [Related]
11. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. Kučera L; Moos M; Štětina T; Korbelová J; Vodrážka P; Des Marteaux L; Grgac R; Hůla P; Rozsypal J; Faltus M; Šimek P; Sedlacek R; Koštál V J Exp Biol; 2022 Apr; 225(8):. PubMed ID: 35380003 [TBL] [Abstract][Full Text] [Related]
12. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations. Stormo SK; Praebel K; Elvevoll EO Parasitology; 2009 Sep; 136(11):1317-24. PubMed ID: 19627634 [TBL] [Abstract][Full Text] [Related]
13. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening. Levis NA; Yi SX; Lee RE J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523 [TBL] [Abstract][Full Text] [Related]
14. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis. Doelling AR; Griffis N; Williams JB J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457 [TBL] [Abstract][Full Text] [Related]
15. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
16. Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement. Hůla P; Moos M; Des Marteaux L; Šimek P; Koštál V Proc Biol Sci; 2022 Jun; 289(1976):20220308. PubMed ID: 35673862 [TBL] [Abstract][Full Text] [Related]
17. Insect mitochondria as targets of freezing-induced injury. Štětina T; Des Marteaux LE; Koštál V Proc Biol Sci; 2020 Jul; 287(1931):20201273. PubMed ID: 32693722 [TBL] [Abstract][Full Text] [Related]
18. Insect fat body cell morphology and response to cold stress is modulated by acclimation. Des Marteaux LE; Štětina T; Koštál V J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30190314 [TBL] [Abstract][Full Text] [Related]
19. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Moos M; Korbelová J; Štětina T; Opekar S; Šimek P; Grgac R; Koštál V Metabolites; 2022 Feb; 12(2):. PubMed ID: 35208237 [TBL] [Abstract][Full Text] [Related]