BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27489224)

  • 1. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site.
    Alleyne T; Ignacio DN; Sampson VB; Ashe D; Wilson M
    Biotechnol Appl Biochem; 2017 Sep; 64(5):677-685. PubMed ID: 27489224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen/hydride ion relay--a mechanism for early electron transfer in cytochrome c oxidases.
    Alleyne T; Ashe D
    West Indian Med J; 2013 Jan; 62(1):3-11. PubMed ID: 24171321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman study of the interactions between cytochrome c variants and cytochrome c oxidase.
    Hildebrandt P; Vanhecke F; Buse G; Soulimane T; Mauk AG
    Biochemistry; 1993 Oct; 32(40):10912-22. PubMed ID: 8399241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover.
    Sampson V; Alleyne T
    Eur J Biochem; 2001 Dec; 268(24):6534-44. PubMed ID: 11737208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the specifics of substrate binding for cytochrome c oxidase: a computer assisted approach.
    Sampson VB; Alleyne T; Ashe D
    West Indian Med J; 2009 Jan; 58(1):54-60. PubMed ID: 19565999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early electron transfer in cytochrome c oxidase occurs by a chymotrypsin type relay.
    Alleyne T; Sampson VB
    West Indian Med J; 2009 Dec; 58(6):499-505. PubMed ID: 20583674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of the K-proton transfer pathway in cytochrome c oxidase.
    Brändén M; Sigurdson H; Namslauer A; Gennis RB; Adelroth P; Brzezinski P
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5013-8. PubMed ID: 11296255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate binding-dissociation and intermolecular electron transfer in cytochrome c oxidase are driven by energy-dependent conformational changes in the enzyme and substrate.
    Ashe D; Alleyne T; Sampson V
    Biotechnol Appl Biochem; 2012; 59(3):213-22. PubMed ID: 23586831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides.
    Jünemann S; Meunier B; Gennis RB; Rich PR
    Biochemistry; 1997 Nov; 36(47):14456-64. PubMed ID: 9398164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1988 May; 27(10):3552-5. PubMed ID: 2841969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase.
    Döpner S; Hildebrandt P; Rosell FI; Mauk AG; von Walter M; Buse G; Soulimane T
    Eur J Biochem; 1999 Apr; 261(2):379-91. PubMed ID: 10215847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single electron reduction of 'slow' and 'fast' cytochrome-c oxidase.
    Moody AJ; Brandt U; Rich PR
    FEBS Lett; 1991 Nov; 293(1-2):101-5. PubMed ID: 1660000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres.
    Mason MG; Nicholls P; Cooper CE
    Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center.
    Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B
    Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides.
    Adelroth P; Gennis RB; Brzezinski P
    Biochemistry; 1998 Feb; 37(8):2470-6. PubMed ID: 9485395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactions of cytochrome c and porphyrin cytochrome c with cytochrome c oxidase. The resting, reduced and pulsed enzymes.
    Kornblatt JA; Luu HA
    Eur J Biochem; 1986 Sep; 159(2):407-13. PubMed ID: 3019692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios.
    Maneg O; Malatesta F; Ludwig B; Drosou V
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):274-81. PubMed ID: 15100042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein--protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c.
    Flöck D; Helms V
    Proteins; 2002 Apr; 47(1):75-85. PubMed ID: 11870867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.