These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 27489224)
1. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site. Alleyne T; Ignacio DN; Sampson VB; Ashe D; Wilson M Biotechnol Appl Biochem; 2017 Sep; 64(5):677-685. PubMed ID: 27489224 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen/hydride ion relay--a mechanism for early electron transfer in cytochrome c oxidases. Alleyne T; Ashe D West Indian Med J; 2013 Jan; 62(1):3-11. PubMed ID: 24171321 [TBL] [Abstract][Full Text] [Related]
3. Resonance Raman study of the interactions between cytochrome c variants and cytochrome c oxidase. Hildebrandt P; Vanhecke F; Buse G; Soulimane T; Mauk AG Biochemistry; 1993 Oct; 32(40):10912-22. PubMed ID: 8399241 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover. Sampson V; Alleyne T Eur J Biochem; 2001 Dec; 268(24):6534-44. PubMed ID: 11737208 [TBL] [Abstract][Full Text] [Related]
5. Probing the specifics of substrate binding for cytochrome c oxidase: a computer assisted approach. Sampson VB; Alleyne T; Ashe D West Indian Med J; 2009 Jan; 58(1):54-60. PubMed ID: 19565999 [TBL] [Abstract][Full Text] [Related]
6. Early electron transfer in cytochrome c oxidase occurs by a chymotrypsin type relay. Alleyne T; Sampson VB West Indian Med J; 2009 Dec; 58(6):499-505. PubMed ID: 20583674 [TBL] [Abstract][Full Text] [Related]
7. On the role of the K-proton transfer pathway in cytochrome c oxidase. Brändén M; Sigurdson H; Namslauer A; Gennis RB; Adelroth P; Brzezinski P Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5013-8. PubMed ID: 11296255 [TBL] [Abstract][Full Text] [Related]
8. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism. Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894 [TBL] [Abstract][Full Text] [Related]
9. Substrate binding-dissociation and intermolecular electron transfer in cytochrome c oxidase are driven by energy-dependent conformational changes in the enzyme and substrate. Ashe D; Alleyne T; Sampson V Biotechnol Appl Biochem; 2012; 59(3):213-22. PubMed ID: 23586831 [TBL] [Abstract][Full Text] [Related]
10. Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides. Jünemann S; Meunier B; Gennis RB; Rich PR Biochemistry; 1997 Nov; 36(47):14456-64. PubMed ID: 9398164 [TBL] [Abstract][Full Text] [Related]
11. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671 [TBL] [Abstract][Full Text] [Related]
12. pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA. Copeland RA; Smith PA; Chan SI Biochemistry; 1988 May; 27(10):3552-5. PubMed ID: 2841969 [TBL] [Abstract][Full Text] [Related]
13. The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase. Döpner S; Hildebrandt P; Rosell FI; Mauk AG; von Walter M; Buse G; Soulimane T Eur J Biochem; 1999 Apr; 261(2):379-91. PubMed ID: 10215847 [TBL] [Abstract][Full Text] [Related]
14. Single electron reduction of 'slow' and 'fast' cytochrome-c oxidase. Moody AJ; Brandt U; Rich PR FEBS Lett; 1991 Nov; 293(1-2):101-5. PubMed ID: 1660000 [TBL] [Abstract][Full Text] [Related]
15. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres. Mason MG; Nicholls P; Cooper CE Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725 [TBL] [Abstract][Full Text] [Related]
16. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center. Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000 [TBL] [Abstract][Full Text] [Related]
17. Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Adelroth P; Gennis RB; Brzezinski P Biochemistry; 1998 Feb; 37(8):2470-6. PubMed ID: 9485395 [TBL] [Abstract][Full Text] [Related]
18. The interactions of cytochrome c and porphyrin cytochrome c with cytochrome c oxidase. The resting, reduced and pulsed enzymes. Kornblatt JA; Luu HA Eur J Biochem; 1986 Sep; 159(2):407-13. PubMed ID: 3019692 [TBL] [Abstract][Full Text] [Related]
19. Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Maneg O; Malatesta F; Ludwig B; Drosou V Biochim Biophys Acta; 2004 Apr; 1655(1-3):274-81. PubMed ID: 15100042 [TBL] [Abstract][Full Text] [Related]
20. Protein--protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Flöck D; Helms V Proteins; 2002 Apr; 47(1):75-85. PubMed ID: 11870867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]