BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27489224)

  • 21. Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis.
    Assempour M; Lim D; Hill BC
    Biochemistry; 1998 Jul; 37(28):9991-8. PubMed ID: 9665704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady state redox levels in cytochrome oxidase: relevance for in vivo near infrared spectroscopy (NIRS).
    Cooper CE; Sharpe MA; Mason MG; Nicholls P
    Adv Exp Med Biol; 2009; 645():123-8. PubMed ID: 19227460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer.
    Alvarez-Paggi D; Zitare U; Murgida DH
    Biochim Biophys Acta; 2014 Jul; 1837(7):1196-207. PubMed ID: 24502917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode.
    Shimada S; Shinzawa-Itoh K; Baba J; Aoe S; Shimada A; Yamashita E; Kang J; Tateno M; Yoshikawa S; Tsukihara T
    EMBO J; 2017 Feb; 36(3):291-300. PubMed ID: 27979921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site.
    Hosler JP; Shapleigh JP; Mitchell DM; Kim Y; Pressler MA; Georgiou C; Babcock GT; Alben JO; Ferguson-Miller S; Gennis RB
    Biochemistry; 1996 Aug; 35(33):10776-83. PubMed ID: 8718868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Routes of electron transfer in beef heart cytochrome c oxidase: is there a unique pathway used by all reductants?
    Crinson M; Nicholls P
    Biochem Cell Biol; 1992 May; 70(5):301-8. PubMed ID: 1323303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance.
    Hou Y; An J; Deng C; Chen S; Xiang J
    Anal Bioanal Chem; 2016 Jul; 408(18):4935-41. PubMed ID: 27215638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase.
    Sakamoto K; Kamiya M; Imai M; Shinzawa-Itoh K; Uchida T; Kawano K; Yoshikawa S; Ishimori K
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12271-6. PubMed ID: 21746907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products?
    Beauvoit B; Rigoulet M
    IUBMB Life; 2001; 52(3-5):143-52. PubMed ID: 11798026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton translocation by cytochrome c oxidase in different phases of the catalytic cycle.
    Wikström M; Verkhovsky MI
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):128-32. PubMed ID: 12206904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formamide probes a role for water in the catalytic cycle of cytochrome c oxidase.
    Liu Y; Hill BC
    Biochim Biophys Acta; 2007 Jan; 1767(1):45-55. PubMed ID: 17184725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cooperative model for proton pumping in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):353-64. PubMed ID: 15100051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.
    Lyubenova S; Maly T; Zwicker K; Brandt U; Ludwig B; Prisner T
    Acc Chem Res; 2010 Feb; 43(2):181-9. PubMed ID: 19842617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy.
    Cooper CE; Springett R
    Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational switching at cytochrome a during steady-state turnover of cytochrome c oxidase.
    Copeland RA
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7281-3. PubMed ID: 1651500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome c oxidase exhibits a rapid conformational change upon reduction of CuA: a tryptophan fluorescence study.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1987 Nov; 26(23):7311-6. PubMed ID: 2827752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfide inhibition of and metabolism by cytochrome c oxidase.
    Nicholls P; Marshall DC; Cooper CE; Wilson MT
    Biochem Soc Trans; 2013 Oct; 41(5):1312-6. PubMed ID: 24059525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic investigations of the reactions of cytochrome c oxidase with hydrogen peroxide.
    Gorren AC; Dekker H; Wever R
    Biochim Biophys Acta; 1986 Nov; 852(1):81-92. PubMed ID: 3021214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais.
    Hou CL; Wang JB; Wu H; Liu JY; Ma ZQ; Feng JT; Zhang X
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1660-6. PubMed ID: 27614312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.