These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27489370)

  • 61. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.
    Grill WM; Cantrell MB; Robertson MS
    J Comput Neurosci; 2008 Feb; 24(1):81-93. PubMed ID: 17562157
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz.
    Soleng AF; Chiu K; Raastad M
    J Physiol; 2003 Oct; 552(Pt 2):459-70. PubMed ID: 14561829
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.
    Sun QQ; Wang X; Yang W
    PLoS One; 2014; 9(7):e101600. PubMed ID: 24992677
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion.
    Campos P; Herbison AE
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18387-92. PubMed ID: 25489105
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity.
    Govorunova EG; Sineshchekov OA; Rodarte EM; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    Sci Rep; 2017 Mar; 7():43358. PubMed ID: 28256618
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2.
    Liske H; Qian X; Anikeeva P; Deisseroth K; Delp S
    Sci Rep; 2013 Oct; 3():3110. PubMed ID: 24173561
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neurochemical comparison of synaptic arrangements of parvocellular, magnocellular, and koniocellular geniculate pathways in owl monkey (Aotus trivirgatus) visual cortex.
    Shostak Y; Ding Y; Casagrande VA
    J Comp Neurol; 2003 Jan; 456(1):12-28. PubMed ID: 12508310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice.
    Nestor CC; Qiu J; Padilla SL; Zhang C; Bosch MA; Fan W; Aicher SA; Palmiter RD; Rønnekleiv OK; Kelly MJ
    Mol Endocrinol; 2016 Jun; 30(6):630-44. PubMed ID: 27093227
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation.
    Maimon BE; Sparks K; Srinivasan S; Zorzos AN; Herr HM
    Nat Biomed Eng; 2018 Jul; 2(7):485-496. PubMed ID: 30948823
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study.
    Witt A; Palmigiano A; Neef A; El Hady A; Wolf F; Battaglia D
    Front Neural Circuits; 2013; 7():49. PubMed ID: 23616748
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
    Saran S; Gupta N; Roy S
    Neurophotonics; 2018 Apr; 5(2):025009. PubMed ID: 29845088
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Independent optical excitation of distinct neural populations.
    Klapoetke NC; Murata Y; Kim SS; Pulver SR; Birdsey-Benson A; Cho YK; Morimoto TK; Chuong AS; Carpenter EJ; Tian Z; Wang J; Xie Y; Yan Z; Zhang Y; Chow BY; Surek B; Melkonian M; Jayaraman V; Constantine-Paton M; Wong GK; Boyden ES
    Nat Methods; 2014 Mar; 11(3):338-46. PubMed ID: 24509633
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates.
    Williams JJ; Watson AM; Vazquez AL; Schwartz AB
    Front Neurosci; 2019; 13():759. PubMed ID: 31417342
    [No Abstract]   [Full Text] [Related]  

  • 74. Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications.
    Wu J; Liu L; Matsuda T; Zhao Y; Rebane A; Drobizhev M; Chang YF; Araki S; Arai Y; March K; Hughes TE; Sagou K; Miyata T; Nagai T; Li WH; Campbell RE
    ACS Chem Neurosci; 2013 Jun; 4(6):963-72. PubMed ID: 23452507
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photonic Nanojet-Mediated Optogenetics.
    Guo J; Wu Y; Gong Z; Chen X; Cao F; Kala S; Qiu Z; Zhao X; Chen JJ; He D; Chen T; Zeng R; Zhu J; Wong KF; Murugappan S; Zhu T; Xian Q; Hou X; Ruan YC; Li B; Li YC; Zhang Y; Sun L
    Adv Sci (Weinh); 2022 Apr; 9(12):e2104140. PubMed ID: 35187865
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optogenetic activation of the diaphragm.
    Benevides ES; Sunshine MD; Rana S; Fuller DD
    Sci Rep; 2022 Apr; 12(1):6503. PubMed ID: 35444167
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics.
    Stahlberg MA; Ramakrishnan C; Willig KI; Boyden ES; Deisseroth K; Dean C
    Neurophotonics; 2019 Jan; 6(1):015007. PubMed ID: 30854405
    [TBL] [Abstract][Full Text] [Related]  

  • 78. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications.
    Wang TW; Sung YL; Chu HW; Lin SF
    Biosens Bioelectron; 2021 May; 179():113060. PubMed ID: 33571936
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
    Hayward RF; Brooks FP; Yang S; Gao S; Cohen AE
    bioRxiv; 2023 Sep; ():. PubMed ID: 36798192
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.