BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27489570)

  • 1. Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome.
    Platt RN; Mangum SF; Ray DA
    Mob DNA; 2016; 7():12. PubMed ID: 27489570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The limited distribution of Helitrons to vesper bats supports horizontal transfer.
    Thomas J; Sorourian M; Ray D; Baker RJ; Pritham EJ
    Gene; 2011 Mar; 474(1-2):52-8. PubMed ID: 21193022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats.
    Pagán HJ; Macas J; Novák P; McCulloch ES; Stevens RD; Ray DA
    Genome Biol Evol; 2012; 4(4):575-85. PubMed ID: 22491057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, miniopterus.
    Miller-Butterworth CM; Murphy WJ; O'Brien SJ; Jacobs DS; Springer MS; Teeling EC
    Mol Biol Evol; 2007 Jul; 24(7):1553-61. PubMed ID: 17449895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats.
    Platt RN; Vandewege MW; Kern C; Schmidt CJ; Hoffmann FG; Ray DA
    Mol Biol Evol; 2014 Jun; 31(6):1536-45. PubMed ID: 24692655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus.
    Ray DA; Feschotte C; Pagan HJ; Smith JD; Pritham EJ; Arensburger P; Atkinson PW; Craig NL
    Genome Res; 2008 May; 18(5):717-28. PubMed ID: 18340040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage.
    Thomas J; Phillips CD; Baker RJ; Pritham EJ
    Genome Biol Evol; 2014 Sep; 6(10):2595-610. PubMed ID: 25223768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus.
    Pritham EJ; Feschotte C
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1895-900. PubMed ID: 17261799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families.
    Hernandez-Hernandez EM; Fernández-Medina RD; Navarro-Escalante L; Nuñez J; Benavides-Machado P; Carareto CMA
    Mol Genet Genomics; 2017 Jun; 292(3):565-583. PubMed ID: 28204924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats.
    Mukai Y; Horie M; Tomonaga K
    J Vet Med Sci; 2018 Aug; 80(8):1356-1363. PubMed ID: 29973433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bats with hATs: evidence for recent DNA transposon activity in genus Myotis.
    Ray DA; Pagan HJ; Thompson ML; Stevens RD
    Mol Biol Evol; 2007 Mar; 24(3):632-9. PubMed ID: 17150974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable Elements in Bats Show Differential Accumulation Patterns Determined by Class and Functionality.
    Paulat NS; McGuire E; Subramanian K; Osmanski AB; Moreno-Santillán DD; Ray DA; Xing J
    Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential SINE evolution in vesper and non-vesper bats.
    Ray DA; Pagan HJ; Platt RN; Kroll AR; Schaack S; Stevens RD
    Mob DNA; 2015; 6():10. PubMed ID: 25991928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polychromophilus spp. (Haemosporida) in Malagasy bats: host specificity and insights on invertebrate vectors.
    Ramasindrazana B; Goodman SM; Dsouli N; Gomard Y; Lagadec E; Randrianarivelojosia M; Dellagi K; Tortosa P
    Malar J; 2018 Aug; 17(1):318. PubMed ID: 30170583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera.
    Lavoie CA; Platt RN; Novick PA; Counterman BA; Ray DA
    Mob DNA; 2013 Oct; 4(1):21. PubMed ID: 24088337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraconserved elements resolve phylogenetic relationships and biogeographic history of African-Malagasy bent-winged bats (Miniopterus).
    Demos TC; Webala PW; Goodman SM; Kerbis Peterhans JC; Lutz HL; Agwanda BR; Cortés-Delgado N; Briones S; Ree RH; Patterson BD
    Mol Phylogenet Evol; 2023 Nov; 188():107890. PubMed ID: 37517508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes.
    Xiong W; He L; Lai J; Dooner HK; Du C
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10263-8. PubMed ID: 24982153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into helitron transposable elements in the mesopolyploid species Brassica rapa.
    Fu D; Wei L; Xiao M; Hayward A
    Gene; 2013 Dec; 532(2):236-45. PubMed ID: 24055723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome.
    Su W; Gu X; Peterson T
    Mol Plant; 2019 Mar; 12(3):447-460. PubMed ID: 30802553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.
    Berthelier J; Casse N; Daccord N; Jamilloux V; Saint-Jean B; Carrier G
    BMC Genomics; 2018 May; 19(1):378. PubMed ID: 29783941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.