BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27490035)

  • 1. Determination of Meta-Parameters for Support Vector Machine Linear Combinations.
    Jasial S; Balfer J; Vogt M; Bajorath J
    Mol Inform; 2015 Feb; 34(2-3):127-33. PubMed ID: 27490035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):983-992. PubMed ID: 30547580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.
    Rodríguez-Pérez R; Vogt M; Bajorath J
    ACS Omega; 2017 Oct; 2(10):6371-6379. PubMed ID: 30023518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis.
    Balfer J; Bajorath J
    PLoS One; 2015; 10(3):e0119301. PubMed ID: 25742011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potency-directed similarity searching using support vector machines.
    Wassermann AM; Heikamp K; Bajorath J
    Chem Biol Drug Des; 2011 Jan; 77(1):30-8. PubMed ID: 21114788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds.
    Rodríguez-Pérez R; Vogt M; Bajorath J
    J Chem Inf Model; 2017 Apr; 57(4):710-716. PubMed ID: 28376613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2022 May; 36(5):355-362. PubMed ID: 35304657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machines with constraints for sparsity in the primal parameters.
    Gómez-Verdejo V; Martínez-Ramón M; Arenas-García J; Lázaro-Gredilla M; Molina-Bulla H
    IEEE Trans Neural Netw; 2011 Aug; 22(8):1269-83. PubMed ID: 21733774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1595-601. PubMed ID: 23799269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The construction of support vector machine classifier using the firefly algorithm.
    Chao CF; Horng MH
    Comput Intell Neurosci; 2015; 2015():212719. PubMed ID: 25802511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug/nondrug classification using Support Vector Machines with various feature selection strategies.
    Korkmaz S; Zararsiz G; Goksuluk D
    Comput Methods Programs Biomed; 2014 Nov; 117(2):51-60. PubMed ID: 25224081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.
    Jrad N; Congedo M; Phlypo R; Rousseau S; Flamary R; Yger F; Rakotomamonjy A
    J Neural Eng; 2011 Oct; 8(5):056004. PubMed ID: 21817778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization and Interpretation of Support Vector Machine Activity Predictions.
    Balfer J; Bajorath J
    J Chem Inf Model; 2015 Jun; 55(6):1136-47. PubMed ID: 25988274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2013 Apr; 53(4):791-801. PubMed ID: 23517241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machines for drug discovery.
    Heikamp K; Bajorath J
    Expert Opin Drug Discov; 2014 Jan; 9(1):93-104. PubMed ID: 24304044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic classification vector machines.
    Chen H; Tino P; Yao X
    IEEE Trans Neural Netw; 2009 Jun; 20(6):901-14. PubMed ID: 19398403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust support vector machine-trained fuzzy system.
    Forghani Y; Yazdi HS
    Neural Netw; 2014 Feb; 50():154-65. PubMed ID: 24316676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships.
    Miyao T; Jasial S; Bajorath J; Funatsu K
    J Comput Aided Mol Des; 2019 Aug; 33(8):729-743. PubMed ID: 31435894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.