These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27490135)

  • 1. First-Principles Study of the Role of O2 and H2O in the Decoupling of Graphene on Cu(111).
    Wong K; Kang SJ; Bielawski CW; Ruoff RS; Kwak SK
    J Am Chem Soc; 2016 Aug; 138(34):10986-94. PubMed ID: 27490135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction.
    Jiang L; Liu Z; Zhao X; Zheng Y
    J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges.
    Luo Z; Kim S; Kawamoto N; Rappe AM; Johnson AT
    ACS Nano; 2011 Nov; 5(11):9154-60. PubMed ID: 21999584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges.
    Borin Barin G; Di Giovannantonio M; Lohr TG; Mishra S; Kinikar A; Perrin ML; Overbeck J; Calame M; Feng X; Fasel R; Ruffieux P
    Nanoscale; 2023 Oct; 15(41):16766-16774. PubMed ID: 37818609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Decoupling and Hole-Doping of Graphene Nanoribbons on Metal Substrates by Chloride Intercalation.
    Kinikar A; Englmann TG; Di Giovannantonio M; Bassi N; Xiang F; Stolz S; Widmer R; Borin Barin G; Turco E; Eimre K; Merino Díez N; Ortega-Guerrero A; Feng X; Gröning O; Pignedoli CA; Fasel R; Ruffieux P
    ACS Nano; 2024 Jul; 18(26):16622-16631. PubMed ID: 38904174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.
    Li Y; Zhang W; Morgenstern M; Mazzarello R
    Phys Rev Lett; 2013 May; 110(21):216804. PubMed ID: 23745911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.