BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1171 related articles for article (PubMed ID: 27490187)

  • 1. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.
    Kim SG; Harwani M; Grama A; Chaterji S
    Sci Rep; 2016 Dec; 6():38433. PubMed ID: 27929098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU.
    Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S
    BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.
    Pundhir S; Bagger FO; Lauridsen FB; Rapin N; Porse BT
    Nucleic Acids Res; 2016 May; 44(9):4037-51. PubMed ID: 27095194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput functional testing of ENCODE segmentation predictions.
    Kwasnieski JC; Fiore C; Chaudhari HG; Cohen BA
    Genome Res; 2014 Oct; 24(10):1595-602. PubMed ID: 25035418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEEP: a general computational framework for predicting enhancers.
    Kleftogiannis D; Kalnis P; Bajic VB
    Nucleic Acids Res; 2015 Jan; 43(1):e6. PubMed ID: 25378307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data.
    Podsiadło A; Wrzesień M; Paja W; Rudnicki W; Wilczyński B
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S16. PubMed ID: 24565409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenomic model of cardiac enhancers with application to genome wide association studies.
    Sahu AD; Aniba R; Chang YP; Hannenhalli S
    Pac Symp Biocomput; 2013; ():92-102. PubMed ID: 23424115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating diverse datasets improves developmental enhancer prediction.
    Erwin GD; Oksenberg N; Truty RM; Kostka D; Murphy KK; Ahituv N; Pollard KS; Capra JA
    PLoS Comput Biol; 2014 Jun; 10(6):e1003677. PubMed ID: 24967590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential analysis of chromatin accessibility and histone modifications for predicting mouse developmental enhancers.
    Fu S; Wang Q; Moore JE; Purcaro MJ; Pratt HE; Fan K; Gu C; Jiang C; Zhu R; Kundaje A; Lu A; Weng Z
    Nucleic Acids Res; 2018 Nov; 46(21):11184-11201. PubMed ID: 30137428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for enhancer prediction based on deep belief network.
    Bu H; Gan Y; Wang Y; Zhou S; Guan J
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):418. PubMed ID: 29072144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer.
    Sheng T; Ho SWT; Ooi WF; Xu C; Xing M; Padmanabhan N; Huang KK; Ma L; Ray M; Guo YA; Sim NL; Anene-Nzelu CG; Chang MM; Razavi-Mohseni M; Beer MA; Foo RSY; Sundar R; Chan YH; Tan ALK; Ong X; Skanderup AJ; White KP; Jha S; Tan P
    Genome Med; 2021 Oct; 13(1):158. PubMed ID: 34635154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancer target prediction: state-of-the-art approaches and future prospects.
    Umarov R; Hon CC
    Biochem Soc Trans; 2023 Oct; 51(5):1975-1988. PubMed ID: 37830459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global view of enhancer-promoter interactome in human cells.
    He B; Chen C; Teng L; Tan K
    Proc Natl Acad Sci U S A; 2014 May; 111(21):E2191-9. PubMed ID: 24821768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.