These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27490363)

  • 1. Stability Analysis of SIR Model with Distributed Delay on Complex Networks.
    Huang C; Cao J; Wen F; Yang X
    PLoS One; 2016; 11(8):e0158813. PubMed ID: 27490363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis.
    Kumar A; Goel K; Nilam
    Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of infection age on an SIS epidemic model on complex networks.
    Yang J; Chen Y; Xu F
    J Math Biol; 2016 Nov; 73(5):1227-1249. PubMed ID: 27007281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global stability properties of a class of renewal epidemic models.
    Meehan MT; Cocks DG; Müller J; McBryde ES
    J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global stability analysis of a delayed susceptible-infected-susceptible epidemic model.
    Paulhus C; Wang XS
    J Biol Dyn; 2015; 9 Suppl 1():45-50. PubMed ID: 24978018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates.
    Goel K; Nilam
    Theory Biosci; 2019 Nov; 138(2):203-213. PubMed ID: 30666514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks.
    Hu HJ; Yuan XP; Huang LH; Huang CX
    Math Biosci Eng; 2019 Jun; 16(5):5729-5749. PubMed ID: 31499735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic SIR network epidemic model with preventive dropping of edges.
    Ball F; Britton T; Leung KY; Sirl D
    J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptive movement of susceptible individuals with memory.
    Zhang H; Wang H; Wei J
    J Math Biol; 2023 Mar; 86(5):65. PubMed ID: 36995472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global stability of an age-structured epidemic model with general Lyapunov functional.
    Chekroun A; Frioui MN; Kuniya T; Touaoula TM
    Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay.
    Zhou XR; Zhang L; Zheng T; Li HL; Teng ZD
    Math Biosci Eng; 2020 Jun; 17(5):4527-4543. PubMed ID: 33120517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment.
    Zhao L; Wang ZC; Ruan S
    J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demographic population cycles and ℛ
    van den Driessche P; Yakubu AA
    J Biol Dyn; 2018 Dec; 12(1):961-982. PubMed ID: 30373469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.