These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27490441)
1. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Shi A; Mou B Genome; 2016 Aug; 59(8):581-8. PubMed ID: 27490441 [TBL] [Abstract][Full Text] [Related]
2. Genetic diversity and association mapping of mineral element concentrations in spinach leaves. Qin J; Shi A; Mou B; Grusak MA; Weng Y; Ravelombola W; Bhattarai G; Dong L; Yang W BMC Genomics; 2017 Dec; 18(1):941. PubMed ID: 29202697 [TBL] [Abstract][Full Text] [Related]
3. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. Shi A; Qin J; Mou B; Correll J; Weng Y; Brenner D; Feng C; Motes D; Yang W; Dong L; Bhattarai G; Ravelombola W PLoS One; 2017; 12(11):e0188745. PubMed ID: 29190770 [TBL] [Abstract][Full Text] [Related]
4. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea). Göl Ş; Göktay M; Allmer J; Doğanlar S; Frary A Mol Genet Genomics; 2017 Aug; 292(4):847-855. PubMed ID: 28386640 [TBL] [Abstract][Full Text] [Related]
5. High resolution mapping and candidate gene identification of downy mildew race 16 resistance in spinach. Bhattarai G; Yang W; Shi A; Feng C; Dhillon B; Correll JC; Mou B BMC Genomics; 2021 Jun; 22(1):478. PubMed ID: 34174825 [TBL] [Abstract][Full Text] [Related]
6. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). Qian W; Fan G; Liu D; Zhang H; Wang X; Wu J; Xu Z BMC Genomics; 2017 Apr; 18(1):276. PubMed ID: 28376721 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a resistance locus (Pfs-1) to the spinach downy mildew pathogen (Peronospora farinosa f. sp. spinaciae) and development of a molecular marker linked to Pfs-1. Irish BM; Correll JC; Feng C; Bentley T; de Los Reyes BG Phytopathology; 2008 Aug; 98(8):894-900. PubMed ID: 18943207 [TBL] [Abstract][Full Text] [Related]
8. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). Liu Z; Lu T; Feng C; Zhang H; Xu Z; Correll JC; Qian W Theor Appl Genet; 2021 May; 134(5):1319-1328. PubMed ID: 33515081 [TBL] [Abstract][Full Text] [Related]
9. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Livaja M; Unterseer S; Erath W; Lehermeier C; Wieseke R; Plieske J; Polley A; Luerßen H; Wieckhorst S; Mascher M; Hahn V; Ouzunova M; Schön CC; Ganal MW Theor Appl Genet; 2016 Feb; 129(2):317-29. PubMed ID: 26536890 [TBL] [Abstract][Full Text] [Related]
10. Molecular insights into the non-recombining nature of the spinach male-determining region. Kudoh T; Takahashi M; Osabe T; Toyoda A; Hirakawa H; Suzuki Y; Ohmido N; Onodera Y Mol Genet Genomics; 2018 Apr; 293(2):557-568. PubMed ID: 29222702 [TBL] [Abstract][Full Text] [Related]
11. Natural variation of folate content and composition in spinach (Spinacia oleracea) germplasm. Shohag MJ; Wei YY; Yu N; Zhang J; Wang K; Patring J; He ZL; Yang XE J Agric Food Chem; 2011 Dec; 59(23):12520-6. PubMed ID: 22004472 [TBL] [Abstract][Full Text] [Related]
12. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Xu C; Jiao C; Sun H; Cai X; Wang X; Ge C; Zheng Y; Liu W; Sun X; Xu Y; Deng J; Zhang Z; Huang S; Dai S; Mou B; Wang Q; Fei Z; Wang Q Nat Commun; 2017 May; 8():15275. PubMed ID: 28537264 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. Chang HX; Brown PJ; Lipka AE; Domier LL; Hartman GL BMC Genomics; 2016 Feb; 17():153. PubMed ID: 26924079 [TBL] [Abstract][Full Text] [Related]
14. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. Shi Z; Liu S; Noe J; Arelli P; Meksem K; Li Z BMC Genomics; 2015 Apr; 16(1):314. PubMed ID: 25903750 [TBL] [Abstract][Full Text] [Related]
15. Genotyping by sequencing for SNP marker development in onion. Labate JA; Glaubitz JC; Havey MJ Genome; 2020 Dec; 63(12):607-613. PubMed ID: 32853533 [TBL] [Abstract][Full Text] [Related]
16. Insight into morphological and molecular variations across Iranian spinach landraces. Rafiei F; Niknam N; Shiran B; Kohpayegani JA; Jafari P Mol Biol Rep; 2021 Feb; 48(2):1567-1578. PubMed ID: 33534116 [TBL] [Abstract][Full Text] [Related]
17. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). Osorio-Guarín JA; Enciso-Rodríguez FE; González C; Fernández-Pozo N; Mueller LA; Barrero LS BMC Genomics; 2016 Mar; 17():248. PubMed ID: 26988219 [TBL] [Abstract][Full Text] [Related]
18. Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach. Awika HO; Bedre R; Yeom J; Marconi TG; Enciso J; Mandadi KK; Jung J; Avila CA Plant Genome; 2019 Nov; 12(3):1-19. PubMed ID: 33016585 [TBL] [Abstract][Full Text] [Related]
19. Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. She H; Qian W; Zhang H; Liu Z; Wang X; Wu J; Feng C; Correll JC; Xu Z Theor Appl Genet; 2018 Dec; 131(12):2529-2541. PubMed ID: 30244393 [TBL] [Abstract][Full Text] [Related]
20. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation. Henning JA; Coggins J; Peterson M BMC Res Notes; 2015 Oct; 8():542. PubMed ID: 26438052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]