BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27490693)

  • 1. Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types.
    Kaiser VB; Taylor MS; Semple CA
    PLoS Genet; 2016 Aug; 12(8):e1006207. PubMed ID: 27490693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-cancer analysis of somatic mutations and epigenetic alterations in insulated neighbourhood boundaries.
    Pinoli P; Stamoulakatou E; Nguyen AP; Rodríguez Martínez M; Ceri S
    PLoS One; 2020; 15(1):e0227180. PubMed ID: 31945090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.
    Mathelier A; Lefebvre C; Zhang AW; Arenillas DJ; Ding J; Wasserman WW; Shah SP
    Genome Biol; 2015 Apr; 16(1):84. PubMed ID: 25903198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription Factors Involved in Tumorigenesis Are Over-Represented in Mutated Active DNA-Binding Sites in Neuroblastoma.
    Capasso M; Lasorsa VA; Cimmino F; Avitabile M; Cantalupo S; Montella A; De Angelis B; Morini M; de Torres C; Castellano A; Locatelli F; Iolascon A
    Cancer Res; 2020 Feb; 80(3):382-393. PubMed ID: 31784426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTCF/cohesin-binding sites are frequently mutated in cancer.
    Katainen R; Dave K; Pitkänen E; Palin K; Kivioja T; Välimäki N; Gylfe AE; Ristolainen H; Hänninen UA; Cajuso T; Kondelin J; Tanskanen T; Mecklin JP; Järvinen H; Renkonen-Sinisalo L; Lepistö A; Kaasinen E; Kilpivaara O; Tuupanen S; Enge M; Taipale J; Aaltonen LA
    Nat Genet; 2015 Jul; 47(7):818-21. PubMed ID: 26053496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread site-dependent buffering of human regulatory polymorphism.
    Maurano MT; Wang H; Kutyavin T; Stamatoyannopoulos JA
    PLoS Genet; 2012; 8(3):e1002599. PubMed ID: 22457641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA.
    Qin F; Song Y; Zhang Y; Facemire L; Frierson H; Li H
    PLoS One; 2016; 11(3):e0150382. PubMed ID: 26938874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational processes in cancer preferentially affect binding of particular transcription factors.
    Liu M; Boot A; Ng AWT; Gordân R; Rozen SG
    Sci Rep; 2021 Feb; 11(1):3339. PubMed ID: 33558557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries.
    Hsu SC; Gilgenast TG; Bartman CR; Edwards CR; Stonestrom AJ; Huang P; Emerson DJ; Evans P; Werner MT; Keller CA; Giardine B; Hardison RC; Raj A; Phillips-Cremins JE; Blobel GA
    Mol Cell; 2017 Apr; 66(1):102-116.e7. PubMed ID: 28388437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cancer mutational signatures on transcription factor motifs in the human genome.
    Yiu Chan CW; Gu Z; Bieg M; Eils R; Herrmann C
    BMC Med Genomics; 2019 May; 12(1):64. PubMed ID: 31109337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Significant Regulatory Mutation Burden at a High-Affinity Position of the CTCF Motif in Gastrointestinal Cancers.
    Umer HM; Cavalli M; Dabrowski MJ; Diamanti K; Kruczyk M; Pan G; Komorowski J; Wadelius C
    Hum Mutat; 2016 Sep; 37(9):904-13. PubMed ID: 27174533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin accessibility contributes to simultaneous mutations of cancer genes.
    Shi Y; Su XB; He KY; Wu BH; Zhang BY; Han ZG
    Sci Rep; 2016 Oct; 6():35270. PubMed ID: 27762310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions.
    Lu Y; Shan G; Xue J; Chen C; Zhang C
    Nucleic Acids Res; 2016 Jul; 44(13):6200-12. PubMed ID: 27067545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis.
    Recillas-Targa F; De La Rosa-Velázquez IA; Soto-Reyes E; Benítez-Bribiesca L
    J Cell Mol Med; 2006; 10(3):554-68. PubMed ID: 16989720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.
    Svetlichnyy D; Imrichova H; Fiers M; Kalender Atak Z; Aerts S
    PLoS Comput Biol; 2015 Nov; 11(11):e1004590. PubMed ID: 26562774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Binding of Posterior HOXA/D Transcription Factors Reveals Subgrouping and Association with CTCF.
    Jerković I; Ibrahim DM; Andrey G; Haas S; Hansen P; Janetzki C; González Navarrete I; Robinson PN; Hecht J; Mundlos S
    PLoS Genet; 2017 Jan; 13(1):e1006567. PubMed ID: 28103242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.