These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Jones JA; Vernacchio VR; Lachance DM; Lebovich M; Fu L; Shirke AN; Schultz VL; Cress B; Linhardt RJ; Koffas MA Sci Rep; 2015 Jun; 5():11301. PubMed ID: 26062452 [TBL] [Abstract][Full Text] [Related]
3. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788 [TBL] [Abstract][Full Text] [Related]
4. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. Xu P; Vansiri A; Bhan N; Koffas MA ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248 [TBL] [Abstract][Full Text] [Related]
5. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter. Cao Y; Xian M Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607 [TBL] [Abstract][Full Text] [Related]
6. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Fang MY; Zhang C; Yang S; Cui JY; Jiang PX; Lou K; Wachi M; Xing XH Microb Cell Fact; 2015 Jan; 14():8. PubMed ID: 25592762 [TBL] [Abstract][Full Text] [Related]
7. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. Ghosh IN; Landick R ACS Synth Biol; 2016 Dec; 5(12):1519-1534. PubMed ID: 27404024 [TBL] [Abstract][Full Text] [Related]
8. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979 [TBL] [Abstract][Full Text] [Related]
9. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754 [TBL] [Abstract][Full Text] [Related]
10. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production. Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232 [TBL] [Abstract][Full Text] [Related]
11. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Liu Y; Shin HD; Li J; Liu L Appl Microbiol Biotechnol; 2015 Feb; 99(3):1109-18. PubMed ID: 25547833 [TBL] [Abstract][Full Text] [Related]
12. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Yuan Y; Du J; Zhao H Methods Mol Biol; 2013; 985():177-209. PubMed ID: 23417805 [TBL] [Abstract][Full Text] [Related]
13. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Rodrigues AL; Becker J; de Souza Lima AO; Porto LM; Wittmann C Biotechnol Bioeng; 2014 Nov; 111(11):2280-9. PubMed ID: 24889673 [TBL] [Abstract][Full Text] [Related]
14. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733 [TBL] [Abstract][Full Text] [Related]
15. Combinatorial pathway engineering for optimized production of the anti-malarial FR900098. Freestone TS; Zhao H Biotechnol Bioeng; 2016 Feb; 113(2):384-92. PubMed ID: 26245694 [TBL] [Abstract][Full Text] [Related]
16. An Engineering Approach for Rewiring Microbial Metabolism. Wenk S; Yishai O; Lindner SN; Bar-Even A Methods Enzymol; 2018; 608():329-367. PubMed ID: 30173769 [TBL] [Abstract][Full Text] [Related]
17. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Song CW; Lee SY Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559 [TBL] [Abstract][Full Text] [Related]
18. One step DNA assembly for combinatorial metabolic engineering. Coussement P; Maertens J; Beauprez J; Van Bellegem W; De Mey M Metab Eng; 2014 May; 23():70-7. PubMed ID: 24594279 [TBL] [Abstract][Full Text] [Related]
19. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Jeschek M; Gerngross D; Panke S Nat Commun; 2016 Mar; 7():11163. PubMed ID: 27029461 [TBL] [Abstract][Full Text] [Related]