These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27490859)

  • 41. Estimation of water solubility from atom-type electrotopological state indices.
    Huuskonen J
    Environ Toxicol Chem; 2001 Mar; 20(3):491-7. PubMed ID: 11349848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.
    Salahinejad M; Le TC; Winkler DA
    J Chem Inf Model; 2013 Jan; 53(1):223-9. PubMed ID: 23215043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography.
    Luan F; Liu HT; Wen Y; Zhang X
    Anal Chim Acta; 2008 Apr; 612(2):126-35. PubMed ID: 18358857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering.
    Loschen C; Klamt A
    J Pharm Pharmacol; 2015 Jun; 67(6):803-11. PubMed ID: 25851032
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An accurate model for prediction of autoignition temperature of pure compounds.
    Gharagheizi F
    J Hazard Mater; 2011 May; 189(1-2):211-21. PubMed ID: 21388737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In silico prediction of chemical Ames mutagenicity.
    Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In silico prediction of aqueous solubility: a multimodel protocol based on chemical similarity.
    Chevillard F; Lagorce D; Reynès C; Villoutreix BO; Vayer P; Miteva MA
    Mol Pharm; 2012 Nov; 9(11):3127-35. PubMed ID: 23072744
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.
    Bernazzani L; Duce C; Micheli A; Mollica V; Sperduti A; Starita A; Tiné MR
    J Chem Inf Model; 2006; 46(5):2030-42. PubMed ID: 16995734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of Alternative Gasoline Sorption in a Semicrystalline Poly(ethylene).
    Villanueva N; Flaconnèche B; Creton B
    ACS Comb Sci; 2015 Oct; 17(10):631-40. PubMed ID: 26348289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure.
    Gharagheizi F
    J Hazard Mater; 2009 Sep; 169(1-3):217-20. PubMed ID: 19386414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new group contribution-based model for estimation of lower flammability limit of pure compounds.
    Gharagheizi F
    J Hazard Mater; 2009 Oct; 170(2-3):595-604. PubMed ID: 19520496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modelling physico-chemical properties of (benzo)triazoles, and screening for environmental partitioning.
    Bhhatarai B; Gramatica P
    Water Res; 2011 Jan; 45(3):1463-71. PubMed ID: 21112604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.
    Allison TC
    J Phys Chem B; 2016 Mar; 120(8):1854-63. PubMed ID: 26684219
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.
    Bhhatarai B; Teetz W; Liu T; Öberg T; Jeliazkova N; Kochev N; Pukalov O; Tetko IV; Kovarich S; Papa E; Gramatica P
    Mol Inform; 2011 Mar; 30(2-3):189-204. PubMed ID: 27466773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of upper flammability limit percent of pure compounds from their molecular structures.
    Gharagheizi F
    J Hazard Mater; 2009 Aug; 167(1-3):507-10. PubMed ID: 19201088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling physico-chemical properties of halogenated benzenes: QSAR optimisation through variables selection.
    Piazza R; Pino A; Marchini S; Passerini L; Chiorboli C; Tosato ML
    SAR QSAR Environ Res; 1995 Nov; 4(1):59-71. PubMed ID: 22091845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A general model for predicting the flash point of miscible mixtures.
    Liaw HJ; Chiu YY
    J Hazard Mater; 2006 Sep; 137(1):38-46. PubMed ID: 16621255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Best of both worlds: combining pharma data and state of the art modeling technology to improve in Silico pKa prediction.
    Fraczkiewicz R; Lobell M; Göller AH; Krenz U; Schoenneis R; Clark RD; Hillisch A
    J Chem Inf Model; 2015 Feb; 55(2):389-97. PubMed ID: 25514239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. COSMOfrag: a novel tool for high-throughput ADME property prediction and similarity screening based on quantum chemistry.
    Hornig M; Klamt A
    J Chem Inf Model; 2005; 45(5):1169-77. PubMed ID: 16180894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accuracy of reported flash point values on material safety data sheets and the impact on product classification.
    Radnoff D
    J Occup Environ Hyg; 2013; 10(10):540-6. PubMed ID: 24011179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.