These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27490859)

  • 61. Liquid flammability ratings predicted by machine learning considering aerosolization.
    Yuan S; Zhang Z; Sun Y; Kwon JS; Mashuga CV
    J Hazard Mater; 2020 Mar; 386():121640. PubMed ID: 31874762
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the rational formulation of alternative fuels: melting point and net heat of combustion predictions for fuel compounds using machine learning methods.
    Saldana DA; Starck L; Mougin P; Rousseau B; Creton B
    SAR QSAR Environ Res; 2013; 24(4):259-77. PubMed ID: 23574496
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Esters flash point prediction using artificial neural networks.
    Astray G; Gálvez JF; Mejuto JC; Moldes OA; Montoya I
    J Comput Chem; 2013 Feb; 34(5):355-9. PubMed ID: 23018601
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity.
    Helma C
    Mol Divers; 2006 May; 10(2):147-58. PubMed ID: 16721629
    [TBL] [Abstract][Full Text] [Related]  

  • 66. QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors.
    Modarresi H; Dearden JC; Modarress H
    J Chem Inf Model; 2006; 46(2):930-6. PubMed ID: 16563024
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of QSAR models for predicting the partition coefficient (log P) of chemicals under the REACH regulation.
    Cappelli CI; Benfenati E; Cester J
    Environ Res; 2015 Nov; 143(Pt A):26-32. PubMed ID: 26432472
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum euclidean distance space analysis: a case study.
    Minovski N; Župerl Š; Drgan V; Novič M
    Anal Chim Acta; 2013 Jan; 759():28-42. PubMed ID: 23260674
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Validation of quantitative structure-activity relationship models to predict water-solubility of organic compounds.
    Cappelli CI; Manganelli S; Lombardo A; Gissi A; Benfenati E
    Sci Total Environ; 2013 Oct; 463-464():781-9. PubMed ID: 23859897
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination.
    Norinder U; Carlsson L; Boyer S; Eklund M
    J Chem Inf Model; 2014 Jun; 54(6):1596-603. PubMed ID: 24797111
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network.
    Paduszyński K; Domańska U
    J Chem Inf Model; 2014 May; 54(5):1311-24. PubMed ID: 24758717
    [TBL] [Abstract][Full Text] [Related]  

  • 73. How can Databases assist with the Prediction of Chemical Compounds?
    Schön JC
    Z Anorg Allg Chem; 2014 Nov; 640(14):2717-2726. PubMed ID: 26213422
    [TBL] [Abstract][Full Text] [Related]  

  • 74. FLASH radiotherapy: Newsflash or flash in the pan?
    Maxim PG; Keall P; Cai J
    Med Phys; 2019 Oct; 46(10):4287-4290. PubMed ID: 31246281
    [No Abstract]   [Full Text] [Related]  

  • 75. Response to "Comment on: May oxygen depletion explain the FLASH effect? A chemical track structure analysis".
    Boscolo D; Scifoni E; Durante M; Krämer M; Fuss MC
    Radiother Oncol; 2021 Oct; 163():237-239. PubMed ID: 34560188
    [No Abstract]   [Full Text] [Related]  

  • 76. Chemical physics: Melted in a flash.
    Cavalleri A
    Nature; 2009 Mar; 458(7234):42-3. PubMed ID: 19262663
    [No Abstract]   [Full Text] [Related]  

  • 77. Igniting nanotubes with a flash.
    Bockrath B; Johnson JK; Sholl DS; Howard B; Matranga C; Shi W; Sorescu D
    Science; 2002 Jul; 297(5579):192-3; author reply 192-3. PubMed ID: 12117006
    [No Abstract]   [Full Text] [Related]  

  • 78. Focusing in a flash.
    Zorpette G
    Sci Am; 2000 Aug; 283(2):82-3. PubMed ID: 10914404
    [No Abstract]   [Full Text] [Related]  

  • 79. Reply to Argento. Flash forward, with caution.
    Leelarathna L; Wilmot EG
    Diabet Med; 2018 Aug; 35(8):1132-1134. PubMed ID: 29687494
    [No Abstract]   [Full Text] [Related]  

  • 80. Flash forward, with caution.
    Argento NB
    Diabet Med; 2018 Aug; 35(8):1131-1132. PubMed ID: 29687499
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.