These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 27491036)

  • 1. Inferring Association between Compound and Pathway with an Improved Ensemble Learning Method.
    Song M; Jiang Z
    Mol Inform; 2015 Nov; 34(11-12):753-60. PubMed ID: 27491036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-pathway interaction prediction via multiple feature fusion.
    Song M; Yan Y; Jiang Z
    Mol Biosyst; 2014 Nov; 10(11):2907-13. PubMed ID: 25122125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways.
    Ai C; Kong L
    J Genet Genomics; 2018 Sep; 45(9):489-504. PubMed ID: 30292791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive ensemble in QSAR prediction for drug discovery.
    Kwon S; Bae H; Jo J; Yoon S
    BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.
    Ozcift A; Gulten A
    Comput Methods Programs Biomed; 2011 Dec; 104(3):443-51. PubMed ID: 21531475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data mining the NCI cancer cell line compound GI(50) values: identifying quinone subtypes effective against melanoma and leukemia cell classes.
    Marx KA; O'Neil P; Hoffman P; Ujwal ML
    J Chem Inf Comput Sci; 2003; 43(5):1652-67. PubMed ID: 14502500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Prediction of network drug target based on improved model of bipartite graph valuation].
    Liu X; Lu P; Zuo X; Chen J; Yang H; Yang Y; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):125-9. PubMed ID: 22737836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active-learning strategies in computer-assisted drug discovery.
    Reker D; Schneider G
    Drug Discov Today; 2015 Apr; 20(4):458-65. PubMed ID: 25499665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepSIBA: chemical structure-based inference of biological alterations using deep learning.
    Fotis C; Meimetis N; Sardis A; Alexopoulos LG
    Mol Omics; 2021 Feb; 17(1):108-120. PubMed ID: 33188379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug target interactions using meta-path-based semantic network analysis.
    Fu G; Ding Y; Seal A; Chen B; Sun Y; Bolton E
    BMC Bioinformatics; 2016 Apr; 17():160. PubMed ID: 27071755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotation forest: A new classifier ensemble method.
    Rodríguez JJ; Kuncheva LI; Alonso CJ
    IEEE Trans Pattern Anal Mach Intell; 2006 Oct; 28(10):1619-30. PubMed ID: 16986543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.
    Cichonska A; Ravikumar B; Parri E; Timonen S; Pahikkala T; Airola A; Wennerberg K; Rousu J; Aittokallio T
    PLoS Comput Biol; 2017 Aug; 13(8):e1005678. PubMed ID: 28787438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.
    Lu J; Chen L; Yin J; Huang T; Bi Y; Kong X; Zheng M; Cai YD
    J Biomol Struct Dyn; 2016; 34(4):906-17. PubMed ID: 26849843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Yin Z; Ai H; Zhang L; Ren G; Wang Y; Zhao Q; Liu H
    J Appl Toxicol; 2019 Oct; 39(10):1366-1377. PubMed ID: 30763981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting potent compounds via model-based global optimization.
    Ahmadi M; Vogt M; Iyer P; Bajorath J; Fröhlich H
    J Chem Inf Model; 2013 Mar; 53(3):553-9. PubMed ID: 23363236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Drug-Target Interactions With Multi-Information Fusion.
    Peng L; Liao B; Zhu W; Li Z; Li K
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):561-572. PubMed ID: 26731781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.
    Jamali AA; Ferdousi R; Razzaghi S; Li J; Safdari R; Ebrahimie E
    Drug Discov Today; 2016 May; 21(5):718-24. PubMed ID: 26821132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning.
    Harris C; Ghaffari N
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S7. PubMed ID: 18831798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-Set Local Hierarchical Clustering (GSLHC)--A Gene Set-Based Approach for Characterizing Bioactive Compounds in Terms of Biological Functional Groups.
    Chung FH; Jin ZH; Hsu TT; Hsu CL; Liu HC; Lee HC
    PLoS One; 2015; 10(10):e0139889. PubMed ID: 26473729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid extreme rotation forest.
    Ayerdi B; Graña M
    Neural Netw; 2014 Apr; 52():33-42. PubMed ID: 24480062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.