These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27491051)

  • 1. Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift.
    Aldabe D; de Castro MP; Milosavljevic S; Bussey MD
    Gait Posture; 2016 Sep; 49():346-352. PubMed ID: 27491051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in anticipatory postural adjustments during rapid single leg lift.
    Bussey MD; Castro MP; Aldabe D; Shemmell J
    Hum Mov Sci; 2018 Feb; 57():417-425. PubMed ID: 29054327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does postural stability following a single leg drop jump landing task relate to postural stability during a single leg stance balance task?
    Fransz DP; Huurnink A; Kingma I; van Dieën JH
    J Biomech; 2014 Sep; 47(12):3248-53. PubMed ID: 25016486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force measurements of postural sway and rapid arm lift in seated children with and without MMC.
    Norrlin S; Karlsson A; Ahlsten G; Lanshammar H; Silander HC; Dahl M
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):197-202. PubMed ID: 11937257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keep on your toes: gait initiation from toe-standing.
    Nolan L; Kerrigan DC
    J Biomech; 2003 Mar; 36(3):393-401. PubMed ID: 12594987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait.
    Chien HL; Lu TW; Liu MW
    Gait Posture; 2013 Jul; 38(3):391-6. PubMed ID: 23337731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent validity and test-retest reliability of VALD ForceDecks' strength, balance, and movement assessment tests.
    Collings TJ; Lima YL; Dutaillis B; Bourne MN
    J Sci Med Sport; 2024 Aug; 27(8):572-580. PubMed ID: 38777737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability and Repetition Effect of the Center of Pressure and Kinematics Parameters That Characterize Trunk Postural Control During Unstable Sitting Test.
    Barbado D; Moreside J; Vera-Garcia FJ
    PM R; 2017 Mar; 9(3):219-230. PubMed ID: 27616542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-retest reliability of three dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with Bland and Altman plots.
    Meldrum D; Shouldice C; Conroy R; Jones K; Forward M
    Gait Posture; 2014 Jan; 39(1):265-71. PubMed ID: 24139682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to assess temporal features of gait initiation with a single force plate.
    Moineau B; Boisgontier MP; Barbieri G; Nougier V
    Gait Posture; 2014; 39(1):631-3. PubMed ID: 23916413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effect of heel lift on postural stability and symmetry of muscle activity.
    Kutilek P; Svoboda Z; Viteckova S; Hana K; Vana Z
    J Back Musculoskelet Rehabil; 2017 Sep; 30(5):1037-1044. PubMed ID: 28946517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural responses triggered by multidirectional leg lifts and surface tilts.
    Hughey LK; Fung J
    Exp Brain Res; 2005 Aug; 165(2):152-66. PubMed ID: 15940494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reliability of biomechanical variables collected during single leg squat and landing tasks.
    Alenezi F; Herrington L; Jones P; Jones R
    J Electromyogr Kinesiol; 2014 Oct; 24(5):718-21. PubMed ID: 25128206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent validity and reliability of wireless instrumented insoles measuring postural balance and temporal gait parameters.
    Oerbekke MS; Stukstette MJ; Schütte K; de Bie RA; Pisters MF; Vanwanseele B
    Gait Posture; 2017 Jan; 51():116-124. PubMed ID: 27744250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using horizontal heel displacement to identify heel strike instants in normal gait.
    Banks JJ; Chang WR; Xu X; Chang CC
    Gait Posture; 2015 Jun; 42(1):101-3. PubMed ID: 25907129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability and validity of trunk accelerometry-derived performance measurements in a standardized heel-rise test in elderly subjects.
    Schmid S; Hilfiker R; Radlinger L
    J Rehabil Res Dev; 2011; 48(9):1137-44. PubMed ID: 22234718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heel lifts on ground reaction force patterns in subjects with structural leg-length discrepancies.
    Schuit D; Adrian M; Pidcoe P
    Phys Ther; 1989 Aug; 69(8):663-70. PubMed ID: 2748721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic and kinetic asymmetry in patients with leg-length discrepancy.
    Liu XC; Fabry G; Molenaers G; Lammens J; Moens P
    J Pediatr Orthop; 1998; 18(2):187-9. PubMed ID: 9531400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.