BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27491625)

  • 1. Cryogenic Trapping and Isotope Editing Identify a Protonated Water Cluster as an Intermediate in the Photosynthetic Oxygen-Evolving Reaction.
    Guo Z; Barry BA
    J Phys Chem B; 2016 Sep; 120(34):8794-808. PubMed ID: 27491625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution.
    Barry BA; Brahmachari U; Guo Z
    Acc Chem Res; 2017 Aug; 50(8):1937-1945. PubMed ID: 28763201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride Maintains a Protonated Internal Water Network in the Photosynthetic Oxygen Evolving Complex.
    Brahmachari U; Gonthier JF; Sherrill CD; Barry BA
    J Phys Chem B; 2017 Nov; 121(45):10327-10337. PubMed ID: 29095617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Bridges Conduct Sequential Proton Transfer in Photosynthetic Oxygen Evolution.
    Brahmachari U; Gonthier JF; Sherrill CD; Barry BA
    J Phys Chem B; 2019 May; 123(21):4487-4496. PubMed ID: 31099580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.
    Debus RJ
    Biochemistry; 2014 May; 53(18):2941-55. PubMed ID: 24730551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium, conformational selection, and redox-active tyrosine YZ in the photosynthetic oxygen-evolving cluster.
    Guo Z; He J; Barry BA
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5658-5663. PubMed ID: 29752381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network of hydrogen bonds near the oxygen-evolving Mn(4)CaO(5) cluster of photosystem II probed with FTIR difference spectroscopy.
    Service RJ; Hillier W; Debus RJ
    Biochemistry; 2014 Feb; 53(6):1001-17. PubMed ID: 24460511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution.
    Polander BC; Barry BA
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10634-9. PubMed ID: 23757501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Determination of the Protonation State of a Key Histidine Residue in the Photosynthetic Water Oxidizing Center.
    Nakamura S; Noguchi T
    J Am Chem Soc; 2017 Jul; 139(27):9364-9375. PubMed ID: 28635275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency fourier transform infrared spectroscopy of the oxygen-evolving and quinone acceptor complexes in photosystem II.
    Chu HA; Gardner MT; O'Brien JP; Babcock GT
    Biochemistry; 1999 Apr; 38(14):4533-41. PubMed ID: 10194375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Proton Transfer to Internal Water during the Photosynthetic Oxygen-Evolving Cycle.
    Brahmachari U; Barry BA
    J Phys Chem B; 2016 Nov; 120(44):11464-11473. PubMed ID: 27800685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared detection of a polarizable proton trapped between photooxidized tyrosine YZ and a coupled histidine in photosystem II: relevance to the proton transfer mechanism of water oxidation.
    Nakamura S; Nagao R; Takahashi R; Noguchi T
    Biochemistry; 2014 May; 53(19):3131-44. PubMed ID: 24786306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced fourier transform infrared difference spectroscopy.
    Noguchi T; Inoue Y; Tang XS
    Biochemistry; 1999 Aug; 38(31):10187-95. PubMed ID: 10433727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azide as a probe of proton transfer reactions in photosynthetic oxygen evolution.
    Cooper IB; Barry BA
    Biophys J; 2008 Dec; 95(12):5843-50. PubMed ID: 18805932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.
    Nakamura S; Ota K; Shibuya Y; Noguchi T
    Biochemistry; 2016 Jan; 55(3):597-607. PubMed ID: 26716470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural coupling between the oxygen-evolving Mn cluster and a tyrosine residue in photosystem II as revealed by Fourier transform infrared spectroscopy.
    Noguchi T; Inoue Y; Tang XS
    Biochemistry; 1997 Dec; 36(48):14705-11. PubMed ID: 9398190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and activation of substrate water molecules in Sr(2+)-substituted photosystem II.
    Chatterjee R; Milikisiyants S; Coates CS; Koua FH; Shen JR; Lakshmi KV
    Phys Chem Chem Phys; 2014 Oct; 16(38):20834-43. PubMed ID: 25167223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium and the Hydrogen-Bonded Water Network in the Photosynthetic Oxygen-Evolving Complex.
    Polander BC; Barry BA
    J Phys Chem Lett; 2013 Mar; 4(5):786-91. PubMed ID: 26281933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-sensitive low-frequency vibrations of reaction intermediates during S-state cycling in photosynthetic water oxidation.
    Kimura Y; Ishii A; Yamanari T; Ono TA
    Biochemistry; 2005 May; 44(21):7613-22. PubMed ID: 15909976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-IR irradiation of the S2 state of the water oxidizing complex of photosystem II at liquid helium temperatures produces the metalloradical intermediate attributed to S1Y(Z*).
    Koulougliotis D; Shen JR; Ioannidis N; Petrouleas V
    Biochemistry; 2003 Mar; 42(10):3045-53. PubMed ID: 12627971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.