These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 27491652)

  • 1. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.
    Luo M; Wang XS; Tropsha A
    Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening.
    Hsieh JH; Wang XS; Teotico D; Golbraikh A; Tropsha A
    J Comput Aided Mol Des; 2008 Sep; 22(9):593-609. PubMed ID: 18338225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cheminformatics in the Service of GPCR Drug Discovery.
    James T
    Methods Mol Biol; 2018; 1705():395-411. PubMed ID: 29188575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR modeling of GPCR ligands: methodologies and examples of applications.
    Tropsha A; Wang SX
    Ernst Schering Found Symp Proc; 2006; (2):49-73. PubMed ID: 17703577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein-coupled receptor affinity prediction based on the use of a profiling dataset: QSAR design, synthesis, and experimental validation.
    Rolland C; Gozalbes R; Nicolaï E; Paugam MF; Coussy L; Barbosa F; Horvath D; Revah F
    J Med Chem; 2005 Oct; 48(21):6563-74. PubMed ID: 16220973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
    Tropsha A; Golbraikh A
    Curr Pharm Des; 2007; 13(34):3494-504. PubMed ID: 18220786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does rational selection of training and test sets improve the outcome of QSAR modeling?
    Martin TM; Harten P; Young DM; Muratov EN; Golbraikh A; Zhu H; Tropsha A
    J Chem Inf Model; 2012 Oct; 52(10):2570-8. PubMed ID: 23030316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds.
    Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A
    J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols.
    Evers A; Hessler G; Matter H; Klabunde T
    J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Deorphanization of Orphan GPCRs.
    Diaz C; Angelloz-Nicoud P; Pihan E
    Methods Mol Biol; 2018; 1705():413-429. PubMed ID: 29188576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of validated QSAR models of D1 dopaminergic antagonists for database mining.
    Oloff S; Mailman RB; Tropsha A
    J Med Chem; 2005 Nov; 48(23):7322-32. PubMed ID: 16279792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational selection of training and test sets for the development of validated QSAR models.
    Golbraikh A; Shen M; Xiao Z; Xiao YD; Lee KH; Tropsha A
    J Comput Aided Mol Des; 2003; 17(2-4):241-53. PubMed ID: 13677490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling.
    Aboalhaija NH; Zihlif MA; Taha MO
    Chem Biol Interact; 2016 Apr; 250():12-26. PubMed ID: 26954606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Free-Wilson selectivity analysis for combinatorial library design.
    Sciabola S; Stanton RV; Johnson TL; Xi H
    Methods Mol Biol; 2011; 685():91-109. PubMed ID: 20981520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-similarity-based QSAR (FS-QSAR) algorithm for ligand biological activity predictions.
    Myint KZ; Ma C; Wang L; Xie XQ
    SAR QSAR Environ Res; 2011 Jun; 22(3):385-410. PubMed ID: 21598200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of chemical-protein interactions: multitarget-QSAR versus computational chemogenomic methods.
    Cheng F; Zhou Y; Li J; Li W; Liu G; Tang Y
    Mol Biosyst; 2012 Sep; 8(9):2373-84. PubMed ID: 22751809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.