These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27491695)

  • 41. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of tactile perception based on phosphene positioning using simulated prosthetic vision.
    Chai X; Zhang L; Li W; Shao F; Yang K; Ren Q
    Artif Organs; 2008 Feb; 32(2):110-5. PubMed ID: 18269352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center.
    Rizzo S; Belting C; Cinelli L; Allegrini L; Genovesi-Ebert F; Barca F; di Bartolo E
    Am J Ophthalmol; 2014 Jun; 157(6):1282-90. PubMed ID: 24560994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assistive peripheral prosthetic vision aids perception and mobility in outdoor environments: A virtual-reality simulation study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1638-41. PubMed ID: 26736589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject.
    Niketeghad S; Muralidharan A; Patel U; Dorn JD; Bonelli L; Greenberg RJ; Pouratian N
    J Neurosurg; 2019 May; 132(6):2000-2007. PubMed ID: 31151104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 48. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of ArgusĀ® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space.
    Luo YH; Zhong JJ; da Cruz L
    Graefes Arch Clin Exp Ophthalmol; 2015 Nov; 253(11):1907-14. PubMed ID: 25547618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration.
    Weitz AC; Nanduri D; Behrend MR; Gonzalez-Calle A; Greenberg RJ; Humayun MS; Chow RH; Weiland JD
    Sci Transl Med; 2015 Dec; 7(318):318ra203. PubMed ID: 26676610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering.
    Barnes N; Scott AF; Lieby P; Petoe MA; McCarthy C; Stacey A; Ayton LN; Sinclair NC; Shivdasani MN; Lovell NH; McDermott HJ; Walker JG
    J Neural Eng; 2016 Jun; 13(3):036013. PubMed ID: 27108845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation.
    Delbeke J; Oozeer M; Veraart C
    Vision Res; 2003 Apr; 43(9):1091-102. PubMed ID: 12676250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Clinical Results after Implantation of Epiretinal Visual Prostheses].
    Schimitzek H; Roessler G; Walter P
    Klin Monbl Augenheilkd; 2016 Nov; 233(11):1227-1232. PubMed ID: 27676329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of residual retinal function by pupillary constrictions and phosphenes using transcorneal electrical stimulation in patients with retinal degeneration.
    Morimoto T; Fukui T; Matsushita K; Okawa Y; Shimojyo H; Kusaka S; Tano Y; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2006 Oct; 244(10):1283-92. PubMed ID: 16550408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements.
    Barry MP; Dagnelie G;
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5095-101. PubMed ID: 22661464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.