These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 27491701)
1. Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. Meyer E; Londoño DM; de Armas RD; Giachini AJ; Rossi MJ; Stoffel SC; Soares CR Int J Phytoremediation; 2017 Feb; 19(2):113-120. PubMed ID: 27491701 [TBL] [Abstract][Full Text] [Related]
2. The phytoprotective effects of arbuscular mycorrhizal fungi on Enterolobium contorstisiliquum (Vell.) Morong in soil containing coal-mine tailings. Dos Santos ML; Soares CRFS; Comin JJ; Lovato PE Int J Phytoremediation; 2017 Dec; 19(12):1100-1108. PubMed ID: 28521508 [TBL] [Abstract][Full Text] [Related]
3. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Punamiya P; Datta R; Sarkar D; Barber S; Patel M; Das P J Hazard Mater; 2010 May; 177(1-3):465-74. PubMed ID: 20061082 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Schneider J; Stürmer SL; Guilherme LR; de Souza Moreira FM; Soares CR J Hazard Mater; 2013 Nov; 262():1105-15. PubMed ID: 23102714 [TBL] [Abstract][Full Text] [Related]
6. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Hassan SE; Hijri M; St-Arnaud M N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814 [TBL] [Abstract][Full Text] [Related]
7. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Ambrosini VG; Voges JG; Canton L; Couto Rda R; Ferreira PA; Comin JJ; de Melo GW; Brunetto G; Soares CR Braz J Microbiol; 2015; 46(4):1045-52. PubMed ID: 26691462 [TBL] [Abstract][Full Text] [Related]
8. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings. Melato FA; Mokgalaka NS; McCrindle RI Int J Phytoremediation; 2016; 18(5):509-20. PubMed ID: 26588814 [TBL] [Abstract][Full Text] [Related]
9. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888 [TBL] [Abstract][Full Text] [Related]
10. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Schneider J; Bundschuh J; Rangel WM; Guilherme LRG Environ Pollut; 2017 May; 224():125-135. PubMed ID: 28214191 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Vargas C; Pérez-Esteban J; Escolástico C; Masaguer A; Moliner A Environ Sci Pollut Res Int; 2016 Jul; 23(13):13521-30. PubMed ID: 27030238 [TBL] [Abstract][Full Text] [Related]
12. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. Schneider J; Labory CR; Rangel WM; Alves E; Guilherme LR J Hazard Mater; 2013 Nov; 262():1245-58. PubMed ID: 22704769 [TBL] [Abstract][Full Text] [Related]
13. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related]
14. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Danh LT; Truong P; Mammucari R; Tran T; Foster N Int J Phytoremediation; 2009; 11(8):664-91. PubMed ID: 19810597 [TBL] [Abstract][Full Text] [Related]
15. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
16. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. Wu SC; Wong CC; Shu WS; Khan AG; Wong MH Int J Phytoremediation; 2011 Jan; 13(1):61-74. PubMed ID: 21598768 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. Cabral L; Soares CR; Giachini AJ; Siqueira JO World J Microbiol Biotechnol; 2015 Nov; 31(11):1655-64. PubMed ID: 26250548 [TBL] [Abstract][Full Text] [Related]
18. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842 [TBL] [Abstract][Full Text] [Related]
19. Effect of Different Amendments on Growing of Canna indica L. Inoculated with AMF on Mining Substrate. El Faiz A; Duponnois R; Winterton P; Ouhammou A; Meddich A; Boularbah A; Hafidi M Int J Phytoremediation; 2015; 17(1-6):503-13. PubMed ID: 25495941 [TBL] [Abstract][Full Text] [Related]
20. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Zheng S; Wang C; Shen Z; Quan Y; Liu X Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]