These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27491918)

  • 1. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?
    Raevsky OA
    Mol Inform; 2016 Apr; 35(3-4):94-8. PubMed ID: 27491918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technically Extended MultiParameter Optimization (TEMPO): An Advanced Robust Scoring Scheme To Calculate Central Nervous System Druggability and Monitor Lead Optimization.
    Ghose AK; Ott GR; Hudkins RL
    ACS Chem Neurosci; 2017 Jan; 8(1):147-154. PubMed ID: 27741392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2010 Jun; 1(6):435-49. PubMed ID: 22778837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical property profile for brain permeability: comparative study by different approaches.
    Raevsky OA; Grigorev VY; Polianczyk DE; Sandakov GI; Solodova SL; Yarkov AV; Bachurin SO; Dearden JC
    J Drug Target; 2016 Aug; 24(7):655-62. PubMed ID: 26755431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS-MODE approach.
    Cabrera Pérez MA; Sanz MB
    Bioorg Med Chem; 2004 Nov; 12(22):5833-43. PubMed ID: 15498659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2016 Jun; 7(6):767-75. PubMed ID: 26991242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution assessment of multiparameter optimization descriptors in CNS penetration.
    Raevsky OA; Grigorev VY; Polianczyk DE; Raevskaja OE; Dearden JC
    SAR QSAR Environ Res; 2018 Oct; 29(10):785-800. PubMed ID: 30274532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the classification abilities of the CNS multi-parametric optimization approach by the method of logistic regression.
    Raevsky OA; Polianczyk DE; Mukhametov A; Grigorev VY
    SAR QSAR Environ Res; 2016 Aug; 27(8):629-35. PubMed ID: 27477321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model.
    Urbina F; Zorn KM; Brunner D; Ekins S
    ACS Chem Neurosci; 2021 Jun; 12(12):2247-2253. PubMed ID: 34028255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.
    Zhang YY; Liu H; Summerfield SG; Luscombe CN; Sahi J
    Mol Pharm; 2016 May; 13(5):1540-50. PubMed ID: 27015243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing libraries with CNS activity.
    Ajay ; Bemis GW; Murcko MA
    J Med Chem; 1999 Dec; 42(24):4942-51. PubMed ID: 10585204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration.
    Panarese JD; Cho HP; Adams JJ; Nance KD; Garcia-Barrantes PM; Chang S; Morrison RD; Blobaum AL; Niswender CM; Stauffer SR; Conn PJ; Lindsley CW
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3822-5. PubMed ID: 27173801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates.
    Adenot M; Lahana R
    J Chem Inf Comput Sci; 2004; 44(1):239-48. PubMed ID: 14741033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes.
    Wager TT; Chandrasekaran RY; Hou X; Troutman MD; Verhoest PR; Villalobos A; Will Y
    ACS Chem Neurosci; 2010 Jun; 1(6):420-34. PubMed ID: 22778836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNS Physicochemical Property Space Shaped by a Diverse Set of Molecules with Experimentally Determined Exposure in the Mouse Brain.
    Rankovic Z
    J Med Chem; 2017 Jul; 60(14):5943-5954. PubMed ID: 28388050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diazenyl derivatives as therapeutic and diagnostic agents acting on central nervous system.
    Kaur H; Yadav S; Narasimhan B
    Cent Nerv Syst Agents Med Chem; 2015; 15(1):42-51. PubMed ID: 25675399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparameter exploration of piperazine derivatives as δ-opioid receptor agonists for CNS indications.
    McCauley JP; Dantzman CL; King MM; Ernst GE; Wang X; Brush K; Palmer WE; Frietze W; Andisik DW; Hoesch V; Doring K; Hulsizer J; Bui KH; Liu J; Hudzik TJ; Wesolowski SS
    Bioorg Med Chem Lett; 2012 Jan; 22(2):1169-73. PubMed ID: 22197139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An
    Bung N; Krishnan SR; Roy A
    J Chem Inf Model; 2022 Jun; 62(11):2685-2695. PubMed ID: 35581002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrimidine derivatives as potential agents acting on central nervous system.
    Kumar S; Deep A; Narasimhan B
    Cent Nerv Syst Agents Med Chem; 2015; 15(1):5-10. PubMed ID: 25756819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of CNS activity of compound libraries using substructure analysis.
    Engkvist O; Wrede P; Rester U
    J Chem Inf Comput Sci; 2003; 43(1):155-60. PubMed ID: 12546548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.