These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27491924)

  • 41. Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds.
    Ren JX; Zhang RT; Zhang H; Cao XS; Liu LK; Xie Y
    Biomed Pharmacother; 2016 Dec; 84():199-207. PubMed ID: 27657828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. D and E rings may not be indispensable for antofine: discovery of phenanthrene and alkylamine chain containing antofine derivatives as novel antiviral agents against tobacco mosaic virus (TMV) based on interaction of antofine and TMV RNA.
    Wang Z; Wei P; Liu Y; Wang Q
    J Agric Food Chem; 2014 Oct; 62(43):10393-404. PubMed ID: 25154018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying biological activity in chemical terms: a pharmacology primer to describe drug effect.
    Kenakin T
    ACS Chem Biol; 2009 Apr; 4(4):249-60. PubMed ID: 19193052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The application of in silico drug-likeness predictions in pharmaceutical research.
    Tian S; Wang J; Li Y; Li D; Xu L; Hou T
    Adv Drug Deliv Rev; 2015 Jun; 86():2-10. PubMed ID: 25666163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing the Relationship Between the Chemical Structures of Drugs and their Activities on Primary Cultures of Pediatric Solid Tumors.
    Simeon S; Ghislat G; Ballester P
    Curr Med Chem; 2021; 28(38):7830-7839. PubMed ID: 33874867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid and Efficient Access to Novel Bio-Inspired 3-Dimensional Tricyclic SpiroLactams as Privileged Structures via Meyers' Lactamization.
    Tangara S; Faïon L; Piveteau C; Capet F; Godelier R; Michel M; Flipo M; Deprez B; Willand N; Villemagne B
    Pharmaceuticals (Basel); 2023 Mar; 16(3):. PubMed ID: 36986512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 2,3-Dihydroquinazolin-4(1
    Badolato M; Aiello F; Neamati N
    RSC Adv; 2018 Jun; 8(37):20894-20921. PubMed ID: 35542353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All.
    Skoreński M; Sieńczyk M
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832946
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores.
    Fotie J; Matherne CM; Wroblewski JE
    Chem Biol Drug Des; 2023 Aug; 102(2):235-254. PubMed ID: 37029092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry.
    Dimova D; Stumpfe D; Hu Y; Bajorath J
    Future Sci OA; 2016 Dec; 2(4):FSO149. PubMed ID: 28116132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring target-selectivity patterns of molecular scaffolds.
    Hu Y; Bajorath J
    ACS Med Chem Lett; 2010 May; 1(2):54-8. PubMed ID: 24900176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Privileged Scaffolds for Drug Design and Activity Improvement-Part I.
    Duan Y; Zhu HL
    Curr Top Med Chem; 2020; 20(28):2519. PubMed ID: 33241777
    [No Abstract]   [Full Text] [Related]  

  • 54. The 2,6-Xylyl Moiety as a Privileged Scaffold of Pharmaceutical Significance.
    Catalano A
    Curr Med Chem; 2022; 29(23):3984-3990. PubMed ID: 34906052
    [No Abstract]   [Full Text] [Related]  

  • 55. Privileged Scaffold for Drug Design and Activity Improvement - Part IV.
    Duan Y; Zhu HL
    Curr Top Med Chem; 2022 Mar; 22(4):268. PubMed ID: 35291933
    [No Abstract]   [Full Text] [Related]  

  • 56. Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite.
    Gaur AS; John L; Kumar N; Vivek MR; Nagamani S; Mahanta HJ; Sastry GN
    Mol Divers; 2023 Jun; 27(3):1459-1468. PubMed ID: 35925528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods.
    Choudhury C; Arul Murugan N; Priyakumar UD
    Drug Discov Today; 2022 Jul; 27(7):1847-1861. PubMed ID: 35301148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hybrid Dynamic Pharmacophore Models as Effective Tools to Identify Novel Chemotypes for Anti-TB Inhibitor Design: A Case Study With Mtb-DapB.
    Choudhury C; Bhardwaj A
    Front Chem; 2020; 8():596412. PubMed ID: 33425853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Virtual repurposing of ursodeoxycholate and chenodeoxycholate as lead candidates against SARS-Cov2-Envelope protein: A molecular dynamics investigation.
    Yadav R; Choudhury C; Kumar Y; Bhatia A
    J Biomol Struct Dyn; 2022 Jul; 40(11):5147-5158. PubMed ID: 33382021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and Functional Diversities of the Hexadecahydro-1H-cyclopenta[a]phenanthrene Framework, a Ubiquitous Scaffold in Steroidal Hormones.
    Choudhury C; Deva Priyakumar U; Narahari Sastry G
    Mol Inform; 2016 Apr; 35(3-4):145-57. PubMed ID: 27491924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.