BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27491947)

  • 1. The cooperativity effect in the reaction of soluble quinoprotein (PQQ-containing) glucose dehydrogenase is not due to subunit interaction but to substrate-assisted catalysis.
    Duine JA; Strampraad MJ; Hagen WR; de Vries S
    FEBS J; 2016 Oct; 283(19):3604-3612. PubMed ID: 27491947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-assisted, direct hydride transfer, and rate-determining tautomerization of C5-reduced PQQ to PQQH2, in the oxidation of beta-D-glucose by soluble, quinoprotein glucose dehydrogenase.
    Dewanti AR; Duine JA
    Biochemistry; 2000 Aug; 39(31):9384-92. PubMed ID: 10924133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative cooperativity in the steady-state kinetics of sugar oxidation by soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus.
    Olsthoorn AJ; Otsuki T; Duine JA
    Eur J Biochem; 1998 Jul; 255(1):255-61. PubMed ID: 9692926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline-quinone-containing) glucose dehydrogenase.
    Olsthoorn AJ; Otsuki T; Duine JA
    Eur J Biochem; 1997 Jul; 247(2):659-65. PubMed ID: 9266710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) stabilizes the semiquinone radical of pyrroloquinoline quinone.
    Sato A; Takagi K; Kano K; Kato N; Duine JA; Ikeda T
    Biochem J; 2001 Aug; 357(Pt 3):893-8. PubMed ID: 11463363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism and specificity of soluble, quinoprotein glucose dehydrogenase in the oxidation of aldose sugars.
    Olsthoorn AJ; Duine JA
    Biochemistry; 1998 Sep; 37(39):13854-61. PubMed ID: 9753475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PQQ as redox shuttle for quinoprotein glucose dehydrogenase.
    Jin W; Wollenberger U; Scheller FW
    Biol Chem; 1998; 379(8-9):1207-11. PubMed ID: 9792456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mechanism of soluble quinoprotein glucose dehydrogenase.
    Oubrie A; Rozeboom HJ; Kalk KH; Olsthoorn AJ; Duine JA; Dijkstra BW
    EMBO J; 1999 Oct; 18(19):5187-94. PubMed ID: 10508152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of enzyme mechanisms by molecular dynamics: studies on quinoproteins, methanol dehydrogenase, and soluble glucose dehydrogenase.
    Reddy SY; Bruice TC
    Protein Sci; 2004 Aug; 13(8):1965-78. PubMed ID: 15273299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of amino acid residues in the active site of Escherichia coli pyrroloquinoline quinone-containing quinoprotein glucose dehydrogenase.
    Elias MD; Tanaka M; Izu H; Matsushita K; Adachi O; Yamada M
    J Biol Chem; 2000 Mar; 275(10):7321-6. PubMed ID: 10702303
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Turbe-Doan A; Record E; Lombard V; Kumar R; Levasseur A; Henrissat B; Garron ML
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Structure of the Catalytic and Cytochrome
    Takeda K; Ishida T; Yoshida M; Samejima M; Ohno H; Igarashi K; Nakamura N
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins.
    Yamada M; Elias MD; Matsushita K; Migita CT; Adachi O
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):185-92. PubMed ID: 12686131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of PQQ-dependent glucose dehydrogenase substrate specificity for its potential use in biocatalysis and bioanalysis.
    Streďanský M; Monošík R; Mastihuba V; Sturdík E
    Appl Biochem Biotechnol; 2013 Oct; 171(4):1032-41. PubMed ID: 23934069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties and crystal structure of quinoprotein aldose sugar dehydrogenase from hyperthermophilic archaeon Pyrobaculum aerophilum.
    Sakuraba H; Yokono K; Yoneda K; Watanabe A; Asada Y; Satomura T; Yabutani T; Motonaka J; Ohshima T
    Arch Biochem Biophys; 2010 Oct; 502(2):81-8. PubMed ID: 20692227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production, characterization, and reconstitution of recombinant quinoprotein glucose dehydrogenase (soluble type; EC 1.1.99.17) apoenzyme of Acinetobacter calcoaceticus.
    Olsthoorn AJ; Duine JA
    Arch Biochem Biophys; 1996 Dec; 336(1):42-8. PubMed ID: 8951033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.
    Cozier GE; Salleh RA; Anthony C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):639-47. PubMed ID: 10359647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering CRISPR interference system to enhance the production of pyrroloquinoline quinone in Klebsiella pneumonia.
    Mi Z; Sun Z; Huang Z; Zhao P; Li Q; Tian P
    Lett Appl Microbiol; 2020 Sep; 71(3):242-250. PubMed ID: 32394472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions.
    Oubrie A; Dijkstra BW
    Protein Sci; 2000 Jul; 9(7):1265-73. PubMed ID: 10933491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.