These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 27492654)
1. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Lee S; Kim B; Park K; Um Y; Lee J Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Yim H; Haselbeck R; Niu W; Pujol-Baxley C; Burgard A; Boldt J; Khandurina J; Trawick JD; Osterhout RE; Stephen R; Estadilla J; Teisan S; Schreyer HB; Andrae S; Yang TH; Lee SY; Burk MJ; Van Dien S Nat Chem Biol; 2011 May; 7(7):445-52. PubMed ID: 21602812 [TBL] [Abstract][Full Text] [Related]
4. Metabolic Engineering of Liu Y; Cen X; Liu D; Chen Z ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647 [TBL] [Abstract][Full Text] [Related]
5. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Hwang HJ; Park JH; Kim JH; Kong MK; Kim JW; Park JW; Cho KM; Lee PC Biotechnol Bioeng; 2014 Jul; 111(7):1374-84. PubMed ID: 24449476 [TBL] [Abstract][Full Text] [Related]
6. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Erian AM; Gibisch M; Pflügl S Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633 [TBL] [Abstract][Full Text] [Related]
7. Identification of factors regulating Escherichia coli 2,3-butanediol production by continuous culture and metabolic flux analysis. Lu M; Lee S; Kim B; Park C; Oh M; Park K; Lee SY; Lee J J Microbiol Biotechnol; 2012 May; 22(5):659-67. PubMed ID: 22561861 [TBL] [Abstract][Full Text] [Related]
8. Metabolic Engineering of Qin N; Zhu F; Liu Y; Liu D; Chen Z ACS Synth Biol; 2024 Jan; 13(1):351-357. PubMed ID: 38110368 [TBL] [Abstract][Full Text] [Related]
10. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY; Sung LY; Li H; Huang CH; Hu YC ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333 [TBL] [Abstract][Full Text] [Related]
11. Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Mazumdar S; Lee J; Oh MK Bioresour Technol; 2013 May; 136():329-36. PubMed ID: 23567699 [TBL] [Abstract][Full Text] [Related]
12. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
13. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
15. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production. Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232 [TBL] [Abstract][Full Text] [Related]
16. A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Lee GB; Kim YJ; Lim JK; Kim TW; Kang SG; Lee HS; Lee JH Appl Microbiol Biotechnol; 2019 Apr; 103(8):3477-3485. PubMed ID: 30887173 [TBL] [Abstract][Full Text] [Related]
17. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol. Balagurunathan B; Jain VK; Tear CJ; Lim CY; Zhao H Bioprocess Biosyst Eng; 2017 Mar; 40(3):361-372. PubMed ID: 27796571 [TBL] [Abstract][Full Text] [Related]
18. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Kay JE; Jewett MC Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449 [TBL] [Abstract][Full Text] [Related]
19. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751 [TBL] [Abstract][Full Text] [Related]
20. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]