These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27492680)

  • 1. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles.
    Byrne JM; van der Laan G; Figueroa AI; Qafoku O; Wang C; Pearce CI; Jackson M; Feinberg J; Rosso KM; Kappler A
    Sci Rep; 2016 Aug; 6():30969. PubMed ID: 27492680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Microbial Corrosion by Magnetite and Electrically Conductive Pili through Direct Fe
    Jin Y; Zhou E; Ueki T; Zhang D; Fan Y; Xu D; Wang F; Lovley DR
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309005. PubMed ID: 37525962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens.
    Byrne JM; Telling ND; Coker VS; Pattrick RA; van der Laan G; Arenholz E; Tuna F; Lloyd JR
    Nanotechnology; 2011 Nov; 22(45):455709. PubMed ID: 22020365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.
    Byrne JM; Muhamadali H; Coker VS; Cooper J; Lloyd JR
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25972437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction.
    Gorski CA; Scherer MM
    Environ Sci Technol; 2009 May; 43(10):3675-80. PubMed ID: 19544872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction.
    Newsome L; Lopez Adams R; Downie HF; Moore KL; Lloyd JR
    FEMS Microbiol Ecol; 2018 Aug; 94(8):. PubMed ID: 29878195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.
    Zheng S; Wang B; Liu F; Wang O
    J Microbiol; 2017 Nov; 55(11):862-870. PubMed ID: 29076069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium.
    Sundman A; Vitzthum AL; Adaktylos-Surber K; Figueroa AI; van der Laan G; Daus B; Kappler A; Byrne JM
    J Hazard Mater; 2020 Feb; 384():121450. PubMed ID: 31759758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.
    Ardo SG; Nélieu S; Ona-Nguema G; Delarue G; Brest J; Pironin E; Morin G
    Environ Sci Technol; 2015 Apr; 49(7):4506-14. PubMed ID: 25756496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maghemite (γ-Fe
    Chen Z; Zhang Y; Luo Q; Wang L; Liu S; Peng Y; Wang H; Shen L; Li Q; Wang Y
    J Environ Sci (China); 2019 Apr; 78():193-203. PubMed ID: 30665638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1.
    Jiao Y; Kappler A; Croal LR; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Stoichiometry on Nanomagnetite Sulfidation.
    Nie M; Li X; Ding Y; Pan Y; Cai Y; Liu Y; Liu J
    Environ Sci Technol; 2023 Feb; 57(7):3002-3011. PubMed ID: 36745694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.
    Kucheryavy P; He J; John VT; Maharjan P; Spinu L; Goloverda GZ; Kolesnichenko VL
    Langmuir; 2013 Jan; 29(2):710-6. PubMed ID: 23249219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging redox activity and Fe(II) at the microbe-mineral interface during Fe(III) reduction.
    Downie HF; Standerwick JP; Burgess L; Natrajan LS; Lloyd JR
    Res Microbiol; 2018 Dec; 169(10):582-589. PubMed ID: 29886258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.