These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 27493032)
1. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles. Kitt JP; Harris JM Langmuir; 2016 Sep; 32(35):9033-44. PubMed ID: 27493032 [TBL] [Abstract][Full Text] [Related]
2. Confocal Raman Microscopy Investigation of Self-Assembly of Hybrid Phospholipid Bilayers within Individual Porous Silica Chromatographic Particles. Kitt JP; Bryce DA; Minteer SD; Harris JM Anal Chem; 2019 Jun; 91(12):7790-7797. PubMed ID: 31083975 [TBL] [Abstract][Full Text] [Related]
3. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles. Bryce DA; Kitt JP; Myres GJ; Harris JM Langmuir; 2020 Apr; 36(15):4071-4079. PubMed ID: 32212663 [TBL] [Abstract][Full Text] [Related]
4. Confocal-Raman Microscopy Characterization of Supported Phospholipid Bilayers Deposited on the Interior Surfaces of Chromatographic Silica. Bryce DA; Kitt JP; Harris JM J Am Chem Soc; 2018 Mar; 140(11):4071-4078. PubMed ID: 29486122 [TBL] [Abstract][Full Text] [Related]
5. Hybrid-Supported Bilayers Formed with Mixed-Charge Surfactants on C Zare M; Kitt JP; Harris JM Langmuir; 2020 Jul; 36(26):7609-7618. PubMed ID: 32503363 [TBL] [Abstract][Full Text] [Related]
6. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles. Kitt JP; Bryce DA; Minteer SD; Harris JM Anal Chem; 2018 Jun; 90(11):7048-7055. PubMed ID: 29757613 [TBL] [Abstract][Full Text] [Related]
8. Confocal Raman Microscopy for Label-Free Detection of Protein-Ligand Binding at Nanopore-Supported Phospholipid Bilayers. Bryce DA; Kitt JP; Harris JM Anal Chem; 2018 Oct; 90(19):11509-11516. PubMed ID: 30175578 [TBL] [Abstract][Full Text] [Related]
9. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. Cherney DP; Conboy JC; Harris JM Anal Chem; 2003 Dec; 75(23):6621-8. PubMed ID: 14640737 [TBL] [Abstract][Full Text] [Related]
10. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles. Fox CB; Myers GA; Harris JM Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614 [TBL] [Abstract][Full Text] [Related]
11. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. Zhao L; Feng SS J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278 [TBL] [Abstract][Full Text] [Related]
12. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. Otten D; Löbbecke L; Beyer K Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511 [TBL] [Abstract][Full Text] [Related]
13. Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy. Fox CB; Horton RA; Harris JM Anal Chem; 2006 Jul; 78(14):4918-24. PubMed ID: 16841911 [TBL] [Abstract][Full Text] [Related]
14. Gel-to-fluid phase transformations in solid-supported phospholipid bilayers assembled by the Langmuir-Blodgett technique: effect of the Langmuir monolayer phase state and molecular density. Ramkaran M; Badia A J Phys Chem B; 2014 Aug; 118(32):9708-21. PubMed ID: 25059993 [TBL] [Abstract][Full Text] [Related]
15. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Lewis RN; Pohle W; McElhaney RN Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311 [TBL] [Abstract][Full Text] [Related]
16. Raman Microscopy Investigation of GLP-1 Peptide Association with Supported Phospholipid Bilayers. Bryce DA; Kitt JP; Harris JM Langmuir; 2021 Dec; 37(49):14265-14274. PubMed ID: 34856805 [TBL] [Abstract][Full Text] [Related]
17. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. Matyszewska D; Bilewicz R; Su Z; Abbasi F; Leitch JJ; Lipkowski J Langmuir; 2016 Feb; 32(7):1791-8. PubMed ID: 26829620 [TBL] [Abstract][Full Text] [Related]
18. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution. Fox CB; Uibel RH; Harris JM J Phys Chem B; 2007 Oct; 111(39):11428-36. PubMed ID: 17850068 [TBL] [Abstract][Full Text] [Related]
19. From molecular modelling to photophysics of neutral oligo- and polyfluorenes incorporated into phospholipid bilayers. Tapia MJ; MonteserĂn M; Burrows HD; Almeida JA; Pais AA; Pina J; Seixas de Melo JS; Jarmelo S; Estelrich J Soft Matter; 2015 Jan; 11(2):303-17. PubMed ID: 25411076 [TBL] [Abstract][Full Text] [Related]
20. Optically trapping confocal Raman microscopy of individual lipid vesicles: kinetics of phospholipase A(2)-catalyzed hydrolysis of phospholipids in the membrane bilayer. Cherney DP; Myers GA; Horton RA; Harris JM Anal Chem; 2006 Oct; 78(19):6928-35. PubMed ID: 17007516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]