These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27493069)

  • 41. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu
    Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J
    ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
    Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L
    Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis.
    Chen Y; Tian X; Zeng W; Zhu X; Hu H; Duan H
    J Colloid Interface Sci; 2015 Feb; 439():21-7. PubMed ID: 25463171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy.
    Della Gaspera E; Bersani M; Mattei G; Nguyen TL; Mulvaney P; Martucci A
    Nanoscale; 2012 Sep; 4(19):5972-9. PubMed ID: 22907103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.
    Amendola V; Scaramuzza S; Agnoli S; Polizzi S; Meneghetti M
    Nanoscale; 2014; 6(3):1423-33. PubMed ID: 24309909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of the emission from electric and magnetic dipoles by gold nanocup antennas.
    Mi H; Wang L; Zhang Y; Zhao G; Jiang R
    Opt Express; 2019 May; 27(10):14221-14230. PubMed ID: 31163874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling.
    Qian X; Zhou X; Nie S
    J Am Chem Soc; 2008 Nov; 130(45):14934-5. PubMed ID: 18937463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing.
    Zhao F; Zeng J; Shih WC
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28657586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.
    He J; Shen Q; Yang S; He G; Tao P; Song C; Wu J; Deng T; Shang W
    Nanoscale; 2018 Jan; 10(2):533-537. PubMed ID: 29260187
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique.
    Milekhin AG; Sveshnikova LL; Duda TA; Rodyakina EE; Dzhagan VM; Gordan OD; Veber SL; Himcinschi C; Latyshev AV; Zahn DR
    Beilstein J Nanotechnol; 2015; 6():2388-95. PubMed ID: 26734529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.
    Chou CW; Hsieh HH; Hseu YC; Chen KS; Wang GJ; Chang HC; Pan YL; Wei YS; Chang KH; Harn YW
    Phys Chem Chem Phys; 2013 Jul; 15(27):11275-86. PubMed ID: 23728083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films.
    Toma M; Loget G; Corn RM
    Nano Lett; 2013; 13(12):6164-9. PubMed ID: 24195672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties.
    Wang W; Yan Y; Zhou N; Zhang H; Li D; Yang D
    Nanoscale; 2016 Feb; 8(6):3704-10. PubMed ID: 26815117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.
    Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viable stretchable plasmonics based on unidirectional nanoprisms.
    Lee JE; Park C; Chung K; Lim JW; Marques Mota F; Jeong U; Kim DH
    Nanoscale; 2018 Feb; 10(8):4105-4112. PubMed ID: 29431795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.