These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 27493184)

  • 21. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enabling technologies to advance microbial isoprenoid production.
    Chen Y; Zhou YJ; Siewers V; Nielsen J
    Adv Biochem Eng Biotechnol; 2015; 148():143-60. PubMed ID: 25549781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocatalysis and biotransformation of resveratrol in microorganisms.
    Mei YZ; Liu RX; Wang DP; Wang X; Dai CC
    Biotechnol Lett; 2015 Jan; 37(1):9-18. PubMed ID: 25179823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in 2-phenylethanol production from engineered microorganisms.
    Wang Y; Zhang H; Lu X; Zong H; Zhuge B
    Biotechnol Adv; 2019; 37(3):403-409. PubMed ID: 30768954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].
    Wang J; Liu W; Xu X; Zhang H; Xian M
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1363-73. PubMed ID: 24432652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS
    Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current strategies and future prospects for enhancing microbial production of citric acid.
    Hu W; Li WJ; Yang HQ; Chen JH
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):201-209. PubMed ID: 30421107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
    Tippmann S; Chen Y; Siewers V; Nielsen J
    Biotechnol J; 2013 Dec; 8(12):1435-44. PubMed ID: 24227704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Recent developments in L-lactate fermentation by genetically modified microorganisms].
    Jiang X; Wang L; Zhang G; Yu B; Zeng Q
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1398-410. PubMed ID: 24432655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic engineering of industrial strains of Saccharomyces cerevisiae.
    Le Borgne S
    Methods Mol Biol; 2012; 824():451-65. PubMed ID: 22160914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches.
    Kutscha R; Pflügl S
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and optimization of synthetic pathways in metabolic engineering.
    Na D; Kim TY; Lee SY
    Curr Opin Microbiol; 2010 Jun; 13(3):363-70. PubMed ID: 20219419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.
    Sun J; Alper HS
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):423-36. PubMed ID: 25413209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories.
    Maia P; Rocha M; Rocha I
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):45-67. PubMed ID: 26609052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose.
    Chen K; Iverson AG; Garza EA; Grayburn WS; Zhou S
    Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.
    Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC
    Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Progress in microbial production of alpha-ketoglutarate].
    Guo H; Du G; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Feb; 29(2):141-52. PubMed ID: 23697159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.