These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27493496)

  • 1. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor.
    Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K
    Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the
    Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
    Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T
    Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in
    Morimoto YV; Namba K; Minamino T
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32872412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella.
    Nakamura S; Morimoto YV; Kami-ike N; Minamino T; Namba K
    J Mol Biol; 2009 Oct; 393(2):300-7. PubMed ID: 19683537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
    Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF
    J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor.
    Che YS; Nakamura S; Morimoto YV; Kami-Ike N; Namba K; Minamino T
    Mol Microbiol; 2014 Jan; 91(1):175-84. PubMed ID: 24255940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor.
    Pourjaberi SNS; Terahara N; Namba K; Minamino T
    Mol Microbiol; 2017 Nov; 106(4):646-658. PubMed ID: 28925530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational change in the stator of the bacterial flagellar motor.
    Kojima S; Blair DF
    Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
    Takekawa N; Terahara N; Kato T; Gohara M; Mayanagi K; Hijikata A; Onoue Y; Kojima S; Shirai T; Namba K; Homma M
    Sci Rep; 2016 Aug; 6():31526. PubMed ID: 27531865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.
    Castillo DJ; Nakamura S; Morimoto YV; Che YS; Kami-Ike N; Kudo S; Minamino T; Namba K
    Biophysics (Nagoya-shi); 2013; 9():173-81. PubMed ID: 27493556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation.
    Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T
    J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
    Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T
    J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motility protein interactions in the bacterial flagellar motor.
    Garza AG; Harris-Haller LW; Stoebner RA; Manson MD
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
    Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K
    J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Chaperone for the Stator Units of a Bacterial Flagellum.
    Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
    Asai Y; Yakushi T; Kawagishi I; Homma M
    J Mol Biol; 2003 Mar; 327(2):453-63. PubMed ID: 12628250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the bi-directional bacterial flagellarĀ motor.
    Morimoto YV; Minamino T
    Biomolecules; 2014 Feb; 4(1):217-34. PubMed ID: 24970213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB.
    Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM
    J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.