BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27493513)

  • 1. FTIR study of CPD photolyase with substrate in single strand DNA.
    Mahaputra Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biophysics (Nagoya-shi); 2015; 11():39-45. PubMed ID: 27493513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
    Yamada D; Zhang Y; Iwata T; Hitomi K; Getzoff ED; Kandori H
    Biochemistry; 2012 Jul; 51(29):5774-83. PubMed ID: 22747528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Changes of the Active Center during the Photoactivation of Xenopus (6-4) Photolyase.
    Yamada D; Yamamoto J; Zhang Y; Iwata T; Hitomi K; Getzoff ED; Iwai S; Kandori H
    Biochemistry; 2016 Feb; 55(4):715-23. PubMed ID: 26719910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Conversion of CPD and (6-4) Photolyases by Mutation.
    Yamada D; Dokainish HM; Iwata T; Yamamoto J; Ishikawa T; Todo T; Iwai S; Getzoff ED; Kitao A; Kandori H
    Biochemistry; 2016 Aug; 55(30):4173-83. PubMed ID: 27431478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR study of light-dependent activation and DNA repair processes of (6-4) photolyase.
    Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Todo T; Getzoff ED; Kandori H
    Biochemistry; 2011 May; 50(18):3591-8. PubMed ID: 21462921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural role of two histidines in the (6-4) photolyase reaction.
    Yamada D; Iwata T; Yamamoto J; Hitomi K; Todo T; Iwai S; Getzoff ED; Kandori H
    Biophys Physicobiol; 2015; 12():139-44. PubMed ID: 27493863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants.
    Hitomi K; Arvai AS; Yamamoto J; Hitomi C; Teranishi M; Hirouchi T; Yamamoto K; Iwai S; Tainer JA; Hidema J; Getzoff ED
    J Biol Chem; 2012 Apr; 287(15):12060-9. PubMed ID: 22170053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Changes during the Photorepair and Binding Processes of
    Yamada D; Yamamoto J; Getzoff ED; Iwata T; Kandori H
    Biochemistry; 2021 Nov; 60(43):3253-3261. PubMed ID: 34658241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV.
    Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M
    Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.
    Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP
    J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A putative bifunctional CPD/ (6-4) photolyase from the cyanobacteria
    Fernández MB; Latorre L; Correa-Aragunde N; Cassia R
    Front Microbiol; 2022; 13():981788. PubMed ID: 36386616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-sensitive photoreactivation of cyclobutane thymine dimer in soybean.
    Yamamoto A; Tanbir N; Hirouchi T; Teranishi M; Hidema J; Morioka H; Yamamoto K
    J Radiat Res; 2008 Mar; 49(2):189-96. PubMed ID: 18270478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.
    Weber S
    Biochim Biophys Acta; 2005 Feb; 1707(1):1-23. PubMed ID: 15721603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
    Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S
    DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repair by photolyases.
    Kavakli IH; Ozturk N; Gul S
    Adv Protein Chem Struct Biol; 2019; 115():1-19. PubMed ID: 30798929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase.
    Todo T; Kim ST; Hitomi K; Otoshi E; Inui T; Morioka H; Kobayashi H; Ohtsuka E; Toh H; Ikenaga M
    Nucleic Acids Res; 1997 Feb; 25(4):764-8. PubMed ID: 9016626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.