These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27493555)

  • 21. Roles of Ser130 and Thr126 in chloride binding and photocycle of pharaonis halorhodopsin.
    Sato M; Kikukawa T; Araiso T; Okita H; Shimono K; Kamo N; Demura M; Nitta K
    J Biochem; 2003 Jul; 134(1):151-8. PubMed ID: 12944382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The protonated Schiff base of halorhodopsin from Natronobacterium pharaonis is hydrolyzed at elevated temperatures.
    Mevorat-Kaplan K; Brumfeld V; Engelhard M; Sheves M
    Photochem Photobiol; 2006; 82(6):1414-21. PubMed ID: 16602834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote.
    Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.
    Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internal water molecules of the proton-pumping halorhodopsin in the presence of azide.
    Muneda N; Shibata M; Demura M; Kandori H
    J Am Chem Soc; 2006 May; 128(19):6294-5. PubMed ID: 16683775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FTIR study of CPD photolyase with substrate in single strand DNA.
    Mahaputra Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biophysics (Nagoya-shi); 2015; 11():39-45. PubMed ID: 27493513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrational modes of the protonated Schiff base in pharaonis phoborhodopsin.
    Shimono K; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Jul; 42(25):7801-6. PubMed ID: 12820889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of an active water molecule in the water-oxidizing complex of photosystem II as studied by FTIR spectroscopy.
    Noguchi T; Sugiura M
    Biochemistry; 2000 Sep; 39(36):10943-9. PubMed ID: 10998230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a rapid Buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode.
    Furutani Y; Kimura T; Okamoto K
    Biophysics (Nagoya-shi); 2013; 9():123-9. PubMed ID: 27493550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique Hydrogen Bonds in Membrane Protein Monitored by Whole Mid-IR ATR Spectroscopy in Aqueous Solution.
    Ito S; Iwaki M; Sugita S; Abe-Yoshizumi R; Iwata T; Inoue K; Kandori H
    J Phys Chem B; 2018 Jan; 122(1):165-170. PubMed ID: 29215887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences between the photocycles of halorhodopsin and the acid purple form of bacteriorhodopsin analyzed with millisecond time-resolved FTIR spectroscopy.
    Mitrovich QM; Victor KG; Braiman MS
    Biophys Chem; 1995; 56(1-2):121-7. PubMed ID: 7662860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1992 Jan; 31(2):462-7. PubMed ID: 1731905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study.
    Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4-, Cl-, Br-, and NO3-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Mar; 42(11):3919-35. PubMed ID: 23334569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-bound water molecules in primate red- and green-sensitive visual pigments.
    Katayama K; Furutani Y; Imai H; Kandori H
    Biochemistry; 2012 Feb; 51(6):1126-33. PubMed ID: 22260165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study.
    Morgan JE; Vakkasoglu AS; Lanyi JK; Gennis RB; Maeda A
    Biochemistry; 2010 Apr; 49(15):3273-81. PubMed ID: 20232848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anion uptake in halorhodopsin from Natromonas pharaonis studied by FTIR spectroscopy: consequences for the anion transport mechanism.
    Guijarro J; Engelhard M; Siebert F
    Biochemistry; 2006 Sep; 45(38):11578-88. PubMed ID: 16981717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.