These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 27493574)
1. The dynamic generalization of the Eshelby inclusion problem and its static limit. Ni L; Markenscoff X Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160256. PubMed ID: 27493574 [TBL] [Abstract][Full Text] [Related]
2. The Newtonian potential inhomogeneity problem: non-uniform eigenstrains in cylinders of non-elliptical cross section. Joyce D; Parnell WJ J Eng Math; 2017; 107(1):283-303. PubMed ID: 32009674 [TBL] [Abstract][Full Text] [Related]
3. A viscoelastic Eshelby inclusion model and analysis of the Cell-in-Gel system. Kazemi-Lari MA; Shaw JA; Wineman AS; Shimkunas R; Jian Z; Hegyi B; Izu L; Chen-Izu Y Int J Eng Sci; 2021 Aug; 165():. PubMed ID: 34629507 [TBL] [Abstract][Full Text] [Related]
4. Tensorial analysis of Eshelby stresses in 3D supercooled liquids. LemaƮtre A J Chem Phys; 2015 Oct; 143(16):164515. PubMed ID: 26520535 [TBL] [Abstract][Full Text] [Related]
5. Eshelby problem in amorphous solids. Hentschel HGE; Kumar A; Procaccia I; Roy S Phys Rev E; 2024 Sep; 110(3):L033001. PubMed ID: 39425422 [TBL] [Abstract][Full Text] [Related]
6. Complex dielectric response of ellipsoidal particles with surface conduction. Bertrand EA; Endres AL J Chem Phys; 2009 Jun; 130(22):224705. PubMed ID: 19530782 [TBL] [Abstract][Full Text] [Related]
7. Novel cloaking lamellar structures for a screw dislocation dipole, a circular Eshelby inclusion and a concentrated couple. Wang X; Schiavone P Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200095. PubMed ID: 33071568 [TBL] [Abstract][Full Text] [Related]
8. Strain tensor selection and the elastic theory of incompatible thin sheets. Oshri O; Diamant H Phys Rev E; 2017 May; 95(5-1):053003. PubMed ID: 28618556 [TBL] [Abstract][Full Text] [Related]
9. Robust scaling of strength and elastic constants and universal cooperativity in disordered colloidal micropillars. Strickland DJ; Huang YR; Lee D; Gianola DS Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18167-72. PubMed ID: 25489098 [TBL] [Abstract][Full Text] [Related]
10. Theory of Acoustic Emission From Phase Transformations. Simmons JA; Wadley HNG J Res Natl Bur Stand (1977); 1984; 89(1):55-64. PubMed ID: 34566119 [TBL] [Abstract][Full Text] [Related]
11. Eshelby's problem of a spherical inclusion eccentrically embedded in a finite spherical body. Zou WN; He QC Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160808. PubMed ID: 28293141 [TBL] [Abstract][Full Text] [Related]
12. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
13. A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance. Lee S; Lee J; Ryu B; Ryu S Sci Rep; 2018 May; 8(1):7266. PubMed ID: 29740012 [TBL] [Abstract][Full Text] [Related]
14. A potential for higher-order phenomenological strain gradient plasticity to predict reliable response under non-proportional loading. Panteghini A; Bardella L; Niordson CF Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190258. PubMed ID: 31611720 [TBL] [Abstract][Full Text] [Related]
15. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets. Cafiero G; Vassilicos JC Proc Math Phys Eng Sci; 2019 May; 475(2225):20190038. PubMed ID: 31236057 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Eshelby-Cheng's model in anisotropic porous cracked medium: An ultrasonic physical modeling approach. Nascimento MJS; de Figueiredo JJS; da Silva CB; Chiba BF Ultrasonics; 2020 Mar; 102():106037. PubMed ID: 31678643 [TBL] [Abstract][Full Text] [Related]
17. Dynamic light scattering from dilute suspensions of thin discs and thin rods as limiting forms of cylinder, ellipsoid and ellipsoidal shell of revolution. Fujime S; Kubota K Biophys Chem; 1985 Nov; 23(1-2):1-13. PubMed ID: 17007788 [TBL] [Abstract][Full Text] [Related]
20. Study on the Calculation Method of Stress in Strong Constraint Zones of the Concrete Structure on the Pile Foundation Based on Eshelby Equivalent Inclusion Theory. Yuan M; Zhou D; Chen J; Hua X; Qiang S Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]