These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27493584)

  • 1. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers.
    Sinko R; Vandamme M; Bažant ZP; Keten S
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160490. PubMed ID: 27493584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids.
    Sinko R; Bažant ZP; Keten S
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170570. PubMed ID: 29434509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants.
    Šmilauer V; Dohnalová L; Jirásek M; Sanahuja J; Seetharam S; Babaei S
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term creep deformations in colloidal calcium-silicate-hydrate gels by accelerated aging simulations.
    Liu H; Dong S; Tang L; Anoop Krishnan NM; Masoero E; Sant G; Bauchy M
    J Colloid Interface Sci; 2019 Apr; 542():339-346. PubMed ID: 30769256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition.
    Kim SG; Park YS; Lee YH
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores.
    Liu Z; Shi X; Wu H
    Nanotechnology; 2019 Apr; 30(16):165701. PubMed ID: 30634172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants.
    Quinci F; Dressler M; Strickland AM; Limbert G
    J Mech Behav Biomed Mater; 2014 Apr; 32():62-75. PubMed ID: 24434602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep Control in Soft Particle Packings.
    Dijksman JA; Mullin T
    Phys Rev Lett; 2022 Jun; 128(23):238002. PubMed ID: 35749185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational mobilities of proteins in nanochannels: A coarse-grained molecular dynamics study.
    Haridasan N; Kannam SK; Mogurampelly S; Sathian SP
    Phys Rev E; 2018 Jun; 97(6-1):062415. PubMed ID: 30011556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-Induced Drying of Nanopores.
    Camisasca G; Tinti A; Giacomello A
    J Phys Chem Lett; 2020 Nov; 11(21):9171-9177. PubMed ID: 33054242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.
    Nowak J; Nowak B; Kaczmarek M
    Acta Bioeng Biomech; 2015; 17(4):39-48. PubMed ID: 26899777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the mechanisms of amorphous creep through molecular simulation.
    Cao P; Short MP; Yip S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13631-13636. PubMed ID: 29229846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions.
    Ikonen T; Shin J; Sung W; Ala-Nissila T
    J Chem Phys; 2012 May; 136(20):205104. PubMed ID: 22667592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics of a neutral protein moving through a nanopore in an electrically biased membrane.
    Wells CC; Melnikov DV; Gracheva ME
    J Chem Phys; 2019 Mar; 150(11):115103. PubMed ID: 30901983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.